zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 80.

Publikation

Grützner, R.; König, K.; Horn, C.; Engler, C.; Laub, A.; Vogt, T.; Marillonnet, S.; A transient expression tool box for anthocyanin biosynthesis in Nicotiana benthamiana Plant Biotechnol. J. 22, 1238-1250, (2024) DOI: 10.1111/pbi.14261

Transient expression in Nicotiana benthamiana offers a robust platform for the rapid production of complex secondary metabolites. It has proven highly effective in helping identify genes associated with pathways responsible for synthesizing various valuable natural compounds. While this approach has seen considerable success, it has yet to be applied to uncovering genes involved in anthocyanin biosynthetic pathways. This is because only a single anthocyanin, delphinidin 3‐O‐rutinoside, can be produced in N. benthamiana by activation of anthocyanin biosynthesis using transcription factors. The production of other anthocyanins would necessitate the suppression of certain endogenous flavonoid biosynthesis genes while transiently expressing others. In this work, we present a series of tools for the reconstitution of anthocyanin biosynthetic pathways in N. benthamiana leaves. These tools include constructs for the expression or silencing of anthocyanin biosynthetic genes and a mutant N. benthamiana line generated using CRISPR. By infiltration of defined sets of constructs, the basic anthocyanins pelargonidin 3‐O‐glucoside, cyanidin 3‐O‐glucoside and delphinidin 3‐O‐glucoside could be obtained in high amounts in a few days. Additionally, co‐infiltration of supplementary pathway genes enabled the synthesis of more complex anthocyanins. These tools should be useful to identify genes involved in the biosynthesis of complex anthocyanins. They also make it possible to produce novel anthocyanins not found in nature. As an example, we reconstituted the pathway for biosynthesis of Arabidopsis anthocyanin A5, a cyanidin derivative and achieved the biosynthesis of the pelargonidin and delphinidin variants of A5, pelargonidin A5 and delphinidin A5.
Publikation

Dahiya, P.; Bürstenbinder, K.; The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up Curr. Opin. Plant Biol. 73, 102366, (2023) DOI: 10.1016/j.pbi.2023.102366

The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Publikation

Bürstenbinder, K.; Schwarzerová, K.; European Plant Cytoskeletal Club meeting: A vital platform for advancing plant cytoskeleton research Cytoskeleton 80, 397-399, (2023) DOI: 10.1002/cm.21780

This contribution reports on a meeting of plant cytoskeleton scientists-the European Plant Cytoskeletal Club 2023 conference.
Publikation

Bao, Z.; Guo, Y.; Deng, Y.; Zang, J.; Zhang, J.; Deng, Y.; Ouyang, B.; Qu, X.; Bürstenbinder, K.; Wang, P.; Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato Plant Cell 35, 4266-4283, (2023) DOI: 10.1093/plcell/koad231

Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1–3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70–SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Publikation

Nietzschmann, L.; Smolka, U.; Perino, E. H. B.; Gorzolka, K.; Stamm, G.; Marillonnet, S.; Bürstenbinder, K.; Rosahl, S.; The secreted PAMP-induced peptide StPIP1_1 activates immune responses in potato Sci. Rep. 13, 20534, (2023) DOI: 10.1038/s41598-023-47648-x

Treatment of potato plants with the pathogen-associated molecular pattern Pep-13 leads to the activation of more than 1200 genes. One of these, StPIP1_1, encodes a protein of 76 amino acids with sequence homology to PAMP-induced secreted peptides (PIPs) from Arabidopsis thaliana. Expression of StPIP1_1 is also induced in response to infection with Phytophthora infestans, the causal agent of late blight disease. Apoplastic localization of StPIP1_1-mCherry fusion proteins is dependent on the presence of the predicted signal peptide. A synthetic peptide corresponding to the last 13 amino acids of StPIP1_1 elicits the expression of the StPIP1_1 gene itself, as well as that of pathogenesis related genes. The oxidative burst induced by exogenously applied StPIP1_1 peptide in potato leaf disks is dependent on functional StSERK3A/B, suggesting that StPIP1_1 perception occurs via a receptor complex involving the co-receptor StSERK3A/B. Moreover, StPIP1_1 induces expression of FRK1 in Arabidopsis in an RLK7-dependent manner. Expression of an RLK from potato with high sequence homology to AtRLK7 is induced by StPIP1_1, by Pep-13 and in response to infection with P. infestans. These observations are consistent with the hypothesis that, upon secretion, StPIP1_1 acts as an endogenous peptide required for amplification of the defense response.
Bücher und Buchkapitel

Klemm, S.; Buhl, J.; Möller, B.; Bürstenbinder, K.; Quantitative analysis of microtubule organization in leaf epidermis pavement cells (Hussey, P.J., Wang, P.). The Plant Cytoskeleton 2604, 43-61, (2023) ISBN: 978-1-0716-2866-9 DOI: 10.1007/978-1-0716-2867-6_4

Leaf epidermis pavement cells form highly complex shapes with interlocking lobes and necks at their anticlinal walls. The microtubule cytoskeleton plays essential roles in pavement cell morphogenesis, in particular at necks. Vice versa, shape generates stress patterns that regulate microtubule organization. Genetic or pharmacological perturbations that affect pavement cell shape often affect microtubule organization. Pavement cell shape and microtubule organization are therefore closely interconnected. Here, we present commonly used approaches for the quantitative analysis of pavement cell shape characteristics and of microtubule organization. In combination with ablation experiments, these methods can be applied to investigate how different genotypes (or treatments) affect the organization and stress responsiveness of the microtubule cytoskeleton.
Preprints

Bao, Z.; Guo, Y.; Deng, Y.; Zang, J.; Zhang, J.; Ouyang, B.; Qu, X.; Bürstenbinder, K.; Wang, P.; The microtubule-associated protein SlMAP70 interacts with SlIQD21 and regulates fruit shape formation in tomato (2022) DOI: 10.1101/2022.08.08.503161

The shape of tomato fruits is closely correlated to microtubule organization and the activity of microtubule associated proteins (MAP), but insights into the mechanism from a cell biology perspective are still largely elusive. Analysis of tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs are highly expressed during fruit development. Among these, several members of the plant-specific MAP70 family are preferably expressed at the initiation stage of fruit development. Transgenic tomato lines overexpressing SlMAP70 produced elongated fruits that show reduced cell circularity and microtubule anisotropy, while SlMAP70 loss-of-function mutant showed an opposite effect with flatter fruits. Microtubule anisotropy of fruit endodermis cells exhibited dramatic rearrangement during tomato fruit development, and SlMAP70-1 is likely implicated in cortical microtubule organization and fruit elongation throughout this stage by interacting with SUN10/SlIQD21a. The expression of SlMAP70 (or co-expression of SlMAP70 and SUN10/SlIQD21a) induces microtubule stabilization and prevents its dynamic rearrangement, both activities are essential for fruit shape establishment after anthesis. Together, our results identify SlMAP70 as a novel regulator of fruit elongation, and demonstrate that manipulating microtubule stability and organization at the early fruit developmental stage has a strong impact on fruit shape.
Publikation

Milde, R.; Schnabel, A.; Ditfe, T.; Hoehenwarter, W.; Proksch, C.; Westermann, B.; Vogt, T.; Chemical synthesis of trans 8-methyl-6-nonenoyl-CoA and functional expression unravel capsaicin synthase activity encoded by the Pun1 Locus Molecules 27, 6878, (2022) DOI: 10.3390/molecules27206878

Capsaicin, produced by diverse Capsicum species, is among the world’s most popular spices and of considerable pharmaceutical relevance. Although the capsaicinoid biosynthetic pathway has been investigated for decades, several biosynthetic steps have remained partly hypothetical. Genetic evidence suggested that the decisive capsaicin synthase is encoded by the Pun1 locus. Yet, the genetic evidence of the Pun1 locus was never corroborated by functionally active capsaicin synthase that presumably catalyzes an amide bond formation between trans 8-methyl-6-nonenoyl-CoA derived from branched-chain amino acid biosynthesis and vanilloylamine derived from the phenylpropanoid pathway. In this report, we demonstrate the enzymatic activity of a recombinant capsaicin synthase encoded by Pun1, functionally expressed in Escherichia coli, and provide information on its substrate specificity and catalytic properties. Recombinant capsaicin synthase is specific for selected aliphatic CoA-esters and highly specific for vanilloylamine. Partly purified from E. coli, the recombinant active enzyme is a monomeric protein of 51 kDa that is independent of additional co-factors or associated proteins, as previously proposed. These data can now be used to design capsaicin synthase variants with different properties and alternative substrate preferences.
Publikation

Jäckel, L.; Schnabel, A.; Stellmach, H.; Klauß, U.; Matschi, S.; Hause, G.; Vogt, T.; The terminal enzymatic step in piperine biosynthesis is co‐localized with the product piperine in specialized cells of black pepper (Piper nigrum L.) Plant J. 111, 731–747, (2022) DOI: 10.1111/tpj.15847

Piperine (1-piperoyl piperidine) is responsible for the pungent perception of dried black pepper (Pipernigrum) fruits and essentially contributes to the aromatic properties of this spice in combination with ablend of terpenoids. The final step in piperine biosynthesis involves piperine synthase (PS), which catalyzesthe reaction of piperoyl CoA and piperidine to the biologically active and pungent amide. Nevertheless, experimental data on the cellular localization of piperine and the complete biosynthetic pathway are missing. Not only co-localization of enzymes and products, but also potential transport of piperamides to thesink organs is a possible alternative. This work, which includes purification of the native enzyme, immunolocalization, laser microdissection, fluorescence microscopy, and electron microscopy combinedwith liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), providesexperimental evidence that piperine and PS are co-localized in specialized cells of the black pepper fruit peri-sperm. PS accumulates during early stages of fruit development and its level declines before the fruits arefully mature. The product piperine is co-localized to PS and can be monitored at the cellular level by itsstrong bluish fluorescence. Rising piperine levels during fruit maturation are consistent with the increasingnumbers of fluorescent cells within the perisperm. Signal intensities of individual laser-dissected cells whenmonitored by LC-ESI-MS/MS indicate molar concentrations of this alkaloid. Significant levels of piperineand additional piperamides were also detected in cells distributed in the cortex of black pepper roots. Insummary, the data provide comprehensive experimental evidence of and insights into cell-specific biosyn-thesis and storage of piperidine alkaloids, specific and characteristic for the Piperaceae. By a combination offluorescence microscopy and LC-MS/MS analysis we localized the major piperidine alkaloids to specific cellsof the fruit perisperm and the root cortex. Immunolocalization of native piperine and piperamide synthasesshows that enzymes are co-localized with high concentrations of products in these idioblasts.
Publikation

Yang, B.; Stamm, G.; Bürstenbinder, K.; Voiniciuc, C.; Microtubule‐associated IQD9 orchestrates cellulose patterning in seed mucilage New Phytol. 235, 1096-1110, (2022) DOI: 10.1111/nph.18188

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes are guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis. Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles in cell wall polysaccharide biosynthesis. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. IQD9 as well as a previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein act to maintain cellulose synthase velocity. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in cell wall biosynthesis. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.
IPB Mainnav Search