zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 228.

Publikationen in Druck

Eysholdt‐Derzsó, E.; Hause, B.; Sauter, M.; Schmidt‐Schippers, R. R.; Hypoxia reshapes Arabidopsis root architecture by integrating ERF‐VII factor response and abscisic acid homoeostasis Plant Cell Environ. (2024) DOI: 10.1111/pce.14914

Oxygen limitation (hypoxia), arising as a key stress factor due to flooding, negatively affects plant development. Consequently, maintaining root growth under such stress is crucial for plant survival, yet we know little about the root system\'s adaptions to low‐oxygen conditions and its regulation by phytohormones. In this study, we examine the impact of hypoxia and, herein, the regulatory role of group VII ETHYLENE‐RESPONSE FACTOR (ERFVII) transcription factors on root growth in Arabidopsis. We found lateral root (LR) elongation to be actively maintained by hypoxia via ERFVII factors, as erfVII seedlings possess hypersensitivity towards hypoxia regarding their LR growth. Pharmacological inhibition of abscisic acid (ABA) biosynthesis revealed ERFVII‐driven counteraction of hypoxia‐induced inhibition of LR formation in an ABA‐dependent manner. However, postemergence LR growth under hypoxia mediated by ERFVIIs was independent of ABA. In roots, ERFVIIs mediate, among others, the induction of ABA‐degrading ABA 8′‐hydroxylases CYP707A1 expression. RAP2.12 could activate the pCYC707A1:LUC reporter gene, indicating, combined with single mutant analyses, that this transcription factor regulates ABA levels through corresponding transcript upregulation. Collectively, hypoxia‐induced adaptation of the Arabidopsis root system is shaped by developmental reprogramming, whereby ERFVII‐dependent promotion of LR emergence, but not elongation, is partly executed through regulation of ABA degradation.
Publikation

Wasternack, C.; Hause, B.; BFP1: One of 700 Arabidopsis F-box proteins mediates degradation of JA oxidases to promote plant immunity Mol. Plant 17, 375-376, (2024) DOI: 10.1016/j.molp.2024.02.008

0
Publikation

Launhardt, L.; Uhlenberg, J.; Stellmach, H.; Schomburg, M.; Hause, B.; Heilmann, I.; Heilmann, M.; Association of the Arabidopsis oleoyl Δ12‐desaturase FAD2 with pre‐cis‐Golgi stacks at endoplasmic reticulum‐Golgi‐exit sites Plant J. 117, 242-263, (2024) DOI: 10.1111/tpj.16492

The unsaturation of phospholipids influences the function of membranes. In Arabidopsis thaliana, the oleoyl Δ12‐desaturase FAD2 converts oleic (18:1Δ9) to linoleic acid (18:2Δ9,12) and influences phospholipid unsaturation in different cellular membranes. Despite its importance, the precise localization of Arabidopsis FAD2 has not been unambiguously described. As FAD2 is thought to modify phospholipid‐associated fatty acids at the endoplasmic reticulum (ER), from where unsaturates are distributed to other cellular sites, we hypothesized that FAD2 locates to ER subdomains enabling trafficking of lipid intermediates through the secretory pathway. Fluorescent FAD2 fusions used to test this hypothesis were first assessed for functionality by heterologous expression in yeast (Saccharomyces cerevisiae), and in planta by Arabidopsis fad2 mutant rescue upon ectopic expression from an intrinsic FAD2 promoter fragment. Light sheet fluorescence, laser scanning confocal or spinning disc microscopy of roots, leaves, or mesophyll protoplasts showed the functional fluorescence‐tagged FAD2 variants in flattened donut‐shaped structures of ~0.5–1 μm diameter, in a pattern not resembling mere ER association. High‐resolution imaging of coexpressed organellar markers showed fluorescence‐tagged FAD2 in a ring‐shaped pattern surrounding ER‐proximal Golgi particles, colocalizing with pre‐cis‐Golgi markers. This localization required the unusual C‐terminal retention signal of FAD2, and deletion or substitutions in this protein region resulted in relaxed distribution and diffuse association with the ER. The distinct association of FAD2 with pre‐cis‐Golgi stacks in Arabidopsis root and leaf tissue is consistent with a contribution of FAD2 to membrane lipid homeostasis through the secretory pathway, as verified by an increased plasma membrane liquid phase order in the fad2 mutant.
Publikation

Zeng, M.; Krajinski, F.; Dam, N. M.; Hause, B.; Jarin-1, an inhibitor of JA-Ile biosynthesis in Arabidopsis thaliana , acts differently in other plant species Plant Signaling & Behavior 18, e2273515, (2023) DOI: 10.1080/15592324.2023.2273515

Jasmonates (JAs), including jasmonic acid (JA) and its biologically active derivative JA-Ile, are lipid-derived plant signaling molecules. They govern plant responses to stresses, such as wounding and insect herbivory. Wounding elicits a rapid increase of JA and JA-Ile levels as well as the expression of JAR1, coding for the enzyme involved in JA-Ile biosynthesis. Endogenous increase and application of JAs, such as MeJA, a JA methylester, result in increased defense levels, often accompanied by diminished growth. A JA-Ile biosynthesis inhibitor, jarin-1, was shown to exclusively inhibit the JA-conjugating enzyme JAR1 in Arabidopsis thaliana. To investigate whether jarin-1 does function similarly in other plants, we tested this in Medicago truncatula, Solanum lycopersicum, and Brassica nigra seedlings in a root growth inhibition assay. Application of jarin-1 alleviated the inhibition of root growth after MeJA application in M. truncatula seedlings, proving that jarin-1 is biologically active in M. truncatula. Jarin-1 did not show, however, a similar effect in S. lycopersicum and B. nigra seedlings treated with MeJA. Even JA-Ile levels were not affected by application of jarin-1 in wounded leaf disks from S. lycopersicum. Based on these results, we conclude that the effect of jarin-1 is highly species-specific. Researchers intending to use jarin-1 for studying the function of JAR1 or JA-Ile in their model plants, must test its functionality before use.
Publikation

Zeng, M.; Dam, N. M.; Hause, B.; MtEIN2 affects nitrate uptake and accumulation of photosynthetic pigments under phosphate and nitrate deficiency in Medicago truncatula Physiol. Plant. 175, e13899, (2023) DOI: 10.1111/ppl.13899

Ethylene (ET) controls many facets of plant growth and development under abiotic and biotic stresses. MtEIN2, as a critical element of the ET signaling pathway, is essential in biotic interactions. However, the role of MtEIN2 in responding to abiotic stress, such as combined nutrient deficiency, is less known. To assess the role of ethylene signaling in nutrient uptake, we manipulated nitrate (NO3−) and phosphate (Pi) availability for wild-type (WT) and the ethylene-insensitive (MtEIN2-defective) mutant, sickle, in Medicago truncatula. We measured leaf biomass and photosynthetic pigments in WT and sickle to identify conditions leading to different responses in both genotypes. Under combined NO3− and Pi deficiency, sickle plants had higher chlorophyll and carotenoid contents than WT plants. Under these conditions, nitrate content and gene expression levels of nitrate transporters were higher in the sickle mutant than in the WT. This led to the conclusion that MtEIN2 is associated with nitrate uptake and the content of photosynthetic pigments under combined Pi and NO3−deficiency in M. truncatula. We conclude that ethylene perception plays a critical role in regulating the nutrient status of plants.
Publikation

Darwish, E.; Ghosh, R.; Bentzer, J.; Tsardakas Renhuldt, N.; Proux‐Wera, E.; Kamal, N.; Spannagl, M.; Hause, B.; Sirijovski, N.; Van Aken, O.; The dynamics of touch‐responsive gene expression in cereals Plant J. 116, 282-302, (2023) DOI: 10.1111/tpj.16269

Wind, rain, herbivores, obstacles, neighbouring plants, etc. provide important mechanical cues to steerplant growth and survival. Mechanostimulation to stimulate yield and stress resistance of crops is of signifi-cant research interest, yet a molecular understanding of transcriptional responses to touch is largely absentin cereals. To address this, we performed whole-genome transcriptomics following mechanostimulation ofwheat, barley, and the recent genome-sequenced oat. The largest transcriptome changes occurred 25 minafter touching, with most of the genes being upregulated. While most genes returned to basal expressionlevel by 1–2 h in oat, many genes retained high expression even 4 h post-treatment in barley and wheat.Functional categories such as transcription factors, kinases, phytohormones, and Ca2+regulation wereaffected. In addition, cell wall-related genes involved in (hemi)cellulose, lignin, suberin, and callose biosyn-thesis were touch-responsive, providing molecular insight into mechanically induced changes in cell wallcomposition. Furthermore, several cereal-specific transcriptomic footprints were identified that were notobserved in Arabidopsis. In oat and barley, we found evidence for systemic spreading of touch-induced sig-nalling. Finally, we provide evidence that both the jasmonic acid-dependent and the jasmonic acid-independent pathways underlie touch-signalling in cereals, providing a detailed framework and markergenes for further study of (a)biotic stress responses in cereals.
Publikation

Dahiya, P.; Bürstenbinder, K.; The making of a ring: Assembly and regulation of microtubule-associated proteins during preprophase band formation and division plane set-up Curr. Opin. Plant Biol. 73, 102366, (2023) DOI: 10.1016/j.pbi.2023.102366

The preprophase band (PPB) is a transient cytokinetic structure that marks the future division plane at the onset of mitosis. The PPB forms a dense cortical ring of mainly microtubules, actin filaments, endoplasmic reticulum, and associated proteins that encircles the nucleus of mitotic cells. After PPB disassembly, the positional information is preserved by the cortical division zone (CDZ). The formation of the PPB and its contribution to timely CDZ set-up involves activities of functionally distinct microtubule-associated proteins (MAPs) that interact physically and genetically to support robust division plane orientation in plants. Recent studies identified two types of plant-specific MAPs as key regulators of PPB formation, the TON1 RECRUITMENT MOTIF (TRM) and IQ67 DOMAIN (IQD) families. Both families share hallmarks of disordered scaffold proteins. Interactions of IQDs and TRMs with multiple binding partners, including the microtubule severing KATANIN1, may provide a molecular framework to coordinate PPB formation, maturation, and disassembly.
Publikation

Bürstenbinder, K.; Schwarzerová, K.; European Plant Cytoskeletal Club meeting: A vital platform for advancing plant cytoskeleton research Cytoskeleton 80, 397-399, (2023) DOI: 10.1002/cm.21780

This contribution reports on a meeting of plant cytoskeleton scientists-the European Plant Cytoskeletal Club 2023 conference.
Publikation

Bao, Z.; Guo, Y.; Deng, Y.; Zang, J.; Zhang, J.; Deng, Y.; Ouyang, B.; Qu, X.; Bürstenbinder, K.; Wang, P.; Microtubule-associated protein SlMAP70 interacts with IQ67-domain protein SlIQD21a to regulate fruit shape in tomato Plant Cell 35, 4266-4283, (2023) DOI: 10.1093/plcell/koad231

Tomato (Solanum lycopersicum) fruit shape is related to microtubule organization and the activity of microtubule-associated proteins (MAPs). However, insights into the mechanism of fruit shape formation from a cell biology perspective remain limited. Analysis of the tissue expression profiles of different microtubule regulators revealed that functionally distinct classes of MAPs, including members of the plant-specific MICROTUBULE-ASSOCIATED PROTEIN 70 (MAP70) and IQ67 DOMAIN (IQD, also named SUN in tomato) families, are differentially expressed during fruit development. SlMAP70-1–3 and SlIQD21a are highly expressed during fruit initiation, which relates to the dramatic microtubule pattern rearrangements throughout this developmental stage of tomato fruits. Transgenic tomato lines overexpressing SlMAP70-1 or SlIQD21a produced elongated fruits with reduced cell circularity and microtubule anisotropy, while their loss-of-function mutants showed the opposite phenotype, harboring flatter fruits. Fruits were further elongated in plants coexpressing both SlMAP70-1 and SlIQD21a. We demonstrated that SlMAP70s and SlIQD21a physically interact and that the elongated fruit phenotype is likely due to microtubule stabilization induced by the SlMAP70–SlIQD21a interaction. Together, our results identify SlMAP70 proteins and SlIQD21a as important regulators of fruit elongation and demonstrate that manipulating microtubule function during early fruit development provides an effective approach to alter fruit shape.
Publikation

Ai, H.; Bellstaedt, J.; Bartusch, K. S.; Eschen‐Lippold, L.; Babben, S.; Balcke, G. U.; Tissier, A.; Hause, B.; Andersen, T. G.; Delker, C.; Quint, M.; Auxin‐dependent regulation of cell division rates governs root thermomorphogenesis EMBO J. 42, e111926, (2023) DOI: 10.15252/embj.2022111926

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.
IPB Mainnav Search