zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 104.

Publikation

Montpetit, J.; Clúa, J.; Hsieh, Y.-F.; Vogiatzaki, E.; Müller, J.; Abel, S.; Strasser, R.; Poirier, Y.; Endoplasmic reticulum calnexins participate in the primary root growth response to phosphate deficiency Plant Physiol. 191, 1719-1733, (2023) DOI: 10.1093/plphys/kiac595

Accumulation of incompletely folded proteins in the endoplasmic reticulum (ER) leads to ER stress, activates ER protein degradation pathways, and upregulates genes involved in protein folding. This process is known as the unfolded protein response (UPR). The role of ER protein folding in plant responses to nutrient deficiencies is unclear. We analyzed Arabidopsis (Arabidopsis thaliana) mutants affected in ER protein quality control and established that both CALNEXIN (CNX) genes function in the primary root’s response to phosphate (Pi) deficiency. CNX1 and CNX2 are homologous ER lectins promoting protein folding of N-glycosylated proteins via the recognition of the GlcMan9GlcNAc2 glycan. Growth of cnx1-1 and cnx2-2 single mutants was similar to that of the wild type under high and low Pi conditions, but the cnx1-1 cnx2-2 double mutant showed decreased primary root growth under low Pi conditions due to reduced meristematic cell division. This phenotype was specific to Pi deficiency; the double mutant responded normally to osmotic and salt stress. Expression of CNX2 mutated in amino acids involved in binding the GlcMan9GlcNAc2 glycan failed to complement the cnx1-1 cnx2-2 mutant. The root growth phenotype was Fe dependent and was associated with root apoplastic Fe accumulation. Two genes involved in Fe-dependent inhibition of primary root growth under Pi deficiency, the ferroxidase LOW PHOSPHATE 1 (LPR1) and P5-type ATPase PLEIOTROPIC DRUG RESISTANCE 2 (PDR2) were epistatic to CNX1/CNX2. Overexpressing PDR2 failed to complement the cnx1-1 cnx2-2 root phenotype. The cnx1-1 cnx2-2 mutant showed no evidence of UPR activation, indicating a limited effect on ER protein folding. CNX might process a set of N-glycosylated proteins specifically involved in the response to Pi deficiency.
Publikation

Meena, S. K.; Heidecker, M.; Engelmann, S.; Jaber, A.; de Vries, T.; Triller, S.; Baumann‐Kaschig, K.; Abel, S.; Behrens, S.; Gago-Zachert, S.; Altered expression levels of long noncoding natural antisense transcripts overlapping the UGT73C6 gene affect rosette size in Arabidopsis thaliana Plant J. 113, 460-477, (2023) DOI: 10.1111/tpj.16058

Natural antisense long noncoding RNAs (lncNATs) are involved in the regulation of gene expression in plants, modulating different relevant developmental processes and responses to various stimuli. We have identified and characterized two lncNATs (NAT1UGT73C6 and NAT2UGT73C6, collectively NATsUGT73C6) from Arabidopsis thaliana that are transcribed from gene fully overlapping UGT73C6, a member of the UGT73C subfamily of genes encoding UDP-glycosyltransferases (UGTs). Expression of both NATsUGT73C6 is developmentally controlled and occurs independently of the transcription of UGT73C6 in cis. Downregulation of NATsUGT73C6 levels through artificial microRNAs results in a reduction of the rosette area, while constitutive overexpression of NAT1UGT73C6 or NAT2UGT73C6 leads to the opposite phenotype, an increase in rosette size. This activity of NATsUGT73C6 relies on its RNA sequence, and, although modulation of UGT73C6 in cis cannot be excluded, the observed phenotypes are not a consequence of the regulation of UGT73C6 in trans. The NATsUGT73C6 levels were shown to affect cell proliferation and thus individual leaf size. Consistent with this concept, our data suggest that the NATsUGT73C6 influence the expression levels of key transcription factors involved in regulating leaf growth by modulating cell proliferation. These findings thus reveal an additional regulatory layer on the process of leaf growth.
Publikation

Mahor, D.; Cong, Z.; Weissenborn, M. J.; Hollmann, F.; Zhang, W.; Valorization of small alkanes by biocatalytic oxyfunctionalization ChemSusChem 15, e202101116, (2022) DOI: 10.1002/cssc.202101116

The oxidation of alkanes into valuable chemical products is avital reaction in organic synthesis. This reaction, however, ischallenging, owing to the inertness of C−H bonds. Transitionmetal catalysts for C−H functionalization are frequently ex-plored. Despite chemical alternatives, nature has also evolvedpowerful oxidative enzymes (e.g., methane monooxygenases,cytochrome P450 oxygenases, peroxygenases) that are capableof transforming C−H bonds under very mild conditions, withonly the use of molecular oxygen or hydrogen peroxide aselectron acceptors. Although progress in alkane oxidation hasbeen reviewed extensively, little attention has been paid tosmall alkane oxidation. The latter holds great potential for themanufacture of chemicals. This Minireview provides a conciseoverview of the most relevant enzyme classes capable of smallalkanes (C
Publikation

Naumann, C.; Heisters, M.; Brandt, W.; Janitza, P.; Alfs, C.; Tang, N.; Toto Nienguesso, A.; Ziegler, J.; Imre, R.; Mechtler, K.; Dagdas, Y.; Hoehenwarter, W.; Sawers, G.; Quint, M.; Abel, S.; Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development Curr. Biol. 32, 2189-2205, (2022) DOI: 10.1016/j.cub.2022.04.005

Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi sta-tus are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼2 μmM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.
Publikation

Adjedje, V. K. B.; Schell, E.; Wolf, Y. L.; Laub, A.; Weissenborn, M. J.; Binder, W. H.; Enzymatic degradation of synthetic polyisoprenes via surfactant-free polymer emulsification Green Chemistry 23, 9433-9438, (2021) DOI: 10.1039/d1gc03515k

We report the enzymatic degradation of a synthetic polyisoprene with a cis : trans ratio of 56 : 27 for the first time. Utilizing a bioinspired surfactant-free emulsification strategy in water resulted in substantially increased enzymatic activities with the latex clearing protein LcpK30.
Publikation

Chutia, R.; Scharfenberg, S.; Neumann, S.; Abel, S.; Ziegler, J.; Modulation of phosphate deficiency-induced metabolic changes by iron availability in Arabidopsis thaliana Int. J. Mol. Sci. 22, 7609, (2021) DOI: 10.3390/ijms22147609

Concurrent suboptimal supply of several nutrients requires the coordination of nutrient-specific transcriptional, phenotypic, and metabolic changes in plants in order to optimize growth and development in most agricultural and natural ecosystems. Phosphate (Pi) and iron (Fe) deficiency induce overlapping but mostly opposing transcriptional and root growth responses in Arabidopsis thaliana. On the metabolite level, Pi deficiency negatively modulates Fe deficiency-induced coumarin accumulation, which is controlled by Fe as well as Pi deficiency response regulators. Here, we report the impact of Fe availability on seedling growth under Pi limiting conditions and on Pi deficiency-induced accumulation of amino acids and organic acids, which play important roles in Pi use efficiency. Fe deficiency in Pi replete conditions hardly changed growth and metabolite profiles in roots and shoots of Arabidopsis thaliana, but partially rescued growth under conditions of Pi starvation and severely modulated Pi deficiency-induced metabolic adjustments. Analysis of T-DNA insertion lines revealed the concerted coordination of metabolic profiles by regulators of Fe (FIT, bHLH104, BRUTUS, PYE) as well as of Pi (SPX1, PHR1, PHL1, bHLH32) starvation responses. The results show the interdependency of Pi and Fe availability and the interplay between Pi and Fe starvation signaling on the generation of plant metabolite profiles.
Publikation

Kumari, P.; Dahiya, P.; Livanos, P.; Zergiebel, L.; Kölling, M.; Poeschl, Y.; Stamm, G.; Hermann, A.; Abel, S.; Müller, S.; Bürstenbinder, K.; IQ67 DOMAIN proteins facilitate preprophase band formation and division-plane orientation Nat. Plants 7, 739-747, (2021) DOI: 10.1038/s41477-021-00923-z

Spatiotemporal control of cell division is essential for the growth and development of multicellular organisms. In plant cells, proper cell plate insertion during cytokinesis relies on the premitotic establishment of the division plane at the cell cortex. Two plant-specific cytoskeleton arrays, the preprophase band (PPB) and the phragmoplast, play important roles in division-plane orientation and cell plate formation, respectively1. Microtubule organization and dynamics and their communication with membranes at the cortex and cell plate are coordinated by multiple, mostly distinct microtubule-associated proteins2. How division-plane selection and establishment are linked, however, is still unknown. Here, we report members of the Arabidopsis IQ67 DOMAIN (IQD) family3 as microtubule-targeted proteins that localize to the PPB and phragmoplast and additionally reside at the cell plate and a polarized cortical region including the cortical division zone (CDZ). IQDs physically interact with PHRAGMOPLAST ORIENTING KINESIN (POK) proteins4,5 and PLECKSTRIN HOMOLOGY GTPase ACTIVATING (PHGAP) proteins6, which are core components of the CDZ1. The loss of IQD function impairs PPB formation and affects CDZ recruitment of POKs and PHGAPs, resulting in division-plane positioning defects. We propose that IQDs act as cellular scaffolds that facilitate PPB formation and CDZ set-up during symmetric cell division.
Publikation

Knorrscheidt, A.; Soler, J.; Hünecke, N.; Püllmann, P.; Garcia-Borràs, M.; Weissenborn, M. J.; Simultaneous screening of multiple substrates with an unspecific peroxygenase enabled modified alkane and alkene oxyfunctionalisations Catal. Sci. Technol. 11, 6058, (2021) DOI: 10.1039/d0cy02457k

A high throughput GC-MS approach was developed, permitting the simultaneous analysis of up to three substrates and six products quantitatively from one reaction mixture. This screening approach was applied to site-saturation libraries of the novel unspecific peroxygenase MthUPO. Using this setup enabled substantial insights from a small mutant library. Enzyme variants were identified exhibiting selective alkene epoxidation and substantially shifted regioselectivities to 2- and 1-octanol formations. Computational modelling rationalised the observed selectivity changes.
Publikation

Knorrscheidt, A.; Soler, J.; Hünecke, N.; Püllmann, P.; Garcia-Borràs, M.; Weissenborn, M. J.; Accessing Chemo- and Regioselective Benzylic and Aromatic Oxidations by Protein Engineering of an Unspecific Peroxygenase ACS Catal. 11, 7327-7338, (2021) DOI: 10.1021/acscatal.1c00847

Unspecific peroxygenases (UPOs) enable oxyfunctionalizations of a broad substrate range with unparalleled activities. Tailoring these enzymes for chemo- and regioselective transformations represents a grand challenge due to the difficulties in their heterologous productions. Herein, we performed protein engineering in Saccharomyces cerevisiae using the MthUPO from Myceliophthora thermophila. More than 5300 transformants were screened. This protein engineering led to a significant reshaping of the active site as elucidated by computational modelling. The reshaping was responsible for the increased oxyfunctionalization activity, with improved kcat/Km values of up to 16.5-fold for the model substrate 5-nitro-1,3-benzodioxole. Moreover, variants were identified with high chemo- and regioselectivities in the oxyfunctionalization of aromatic and benzylic carbons, respectively. The benzylic hydroxylation was demonstrated to perform with enantioselectivities of up to 95% ee. The proposed evolutionary protocol and rationalization of the enhanced activities and selectivities acquired by MthUPO variants represent a step forward toward the use and implementation of UPOs in biocatalytic synthetic pathways of industrial interest.
Publikation

Klionsky, D. J.; Abdel-Aziz, A. K.; Abdelfatah, S.; Abdellatif, M.; Abdoli, A.; Abel, S.; Naumann, C.; et al., .; Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy 17, 1-382, (2021) DOI: 10.1080/15548627.2020.1797280

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis  updated  guidelines  for  monitoring  autophagy  in  different  organisms.  Despite  numerous  reviews, there  continues  to  be  confusion  regarding  acceptable  methods  to  evaluate  autophagy,  especially  in multicellular  eukaryotes.  Here,  we  present  a  set  of  guidelines  for  investigators  to  select  and  interpret methods  to  examine  autophagy  and  related  processes,  and  for  reviewers  to  provide  realistic  and reasonable  critiques  of  reports  that  are  focused  on  these  processes.  These  guidelines  are  not  meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being  asked  and  the  system  being  used.  Moreover,  no  individual  assay  is  perfect  for  every situation, calling  for  the  use  of  multiple  techniques  to  properly  monitor  autophagy  in  each  experimental  setting. Finally,  several  core  components  of  the  autophagy  machinery  have  been  implicated  in  distinct  auto-phagic  processes  (canonical  and  noncanonical  autophagy),  implying  that  genetic  approaches  to  block autophagy  should  rely  on  targeting  two  or  more  autophagy-related  genes  that  ideally  participate  in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation  in  the  field.
IPB Mainnav Search