zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 12.

Publikation

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S.; The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy Plant Physiol. 179, 460-476, (2019) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Publikation

Bürstenbinder, K.; Möller, B.; Plötner, R.; Stamm, G.; Hause, G.; Mitra, D.; Abel, S.; The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus Plant Physiol. 173, 1692-1708, (2017) DOI: 10.1104/pp.16.01743

Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth.
Publikation

Dinesh, D. C.; Calderón Villalobos, L. I. A.; Abel, S.; Structural Biology of Nuclear Auxin Action Trends Plant Sci. 21, 302-316, (2016) DOI: 10.1016/j.tplants.2015.10.019

Auxin coordinates plant development largely via hierarchical control of gene expression. During the past decades, the study of early auxin genes paired with the power of Arabidopsis genetics have unraveled key nuclear components and molecular interactions that perceive the hormone and activate primary response genes. Recent research in the realm of structural biology allowed unprecedented insight into: (i) the recognition of auxin-responsive DNA elements by auxin transcription factors; (ii) the inactivation of those auxin response factors by early auxin-inducible repressors; and (iii) the activation of target genes by auxin-triggered repressor degradation. The biophysical studies reviewed here provide an impetus for elucidating the molecular determinants of the intricate interactions between core components of the nuclear auxin response module.
Publikation

Dinesh, D. C.; Kovermann, M.; Gopalswamy, M.; Hellmuth, A.; Calderón Villalobos, L. I. A.; Lilie, H.; Balbach, J.; Abel, S.; Solution structure of the PsIAA4 oligomerization domain reveals interaction modes for transcription factors in early auxin response Proc. Natl. Acad. Sci. U.S.A. 112, 6230-6235, (2015) DOI: 10.1073/pnas.1424077112

The plant hormone auxin activates primary response genes by facilitating proteolytic removal of AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA)-inducible repressors, which directly bind to transcriptional AUXIN RESPONSE FACTORS (ARF). Most AUX/IAA and ARF proteins share highly conserved C-termini mediating homotypic and heterotypic interactions within and between both protein families. The high-resolution NMR structure of C-terminal domains III and IV of the AUX/IAA protein PsIAA4 from pea (Pisum sativum) revealed a globular ubiquitin-like β-grasp fold with homologies to the Phox and Bem1p (PB1) domain. The PB1 domain of wild-type PsIAA4 features two distinct surface patches of oppositely charged amino acid residues, mediating front-to-back multimerization via electrostatic interactions. Mutations of conserved basic or acidic residues on either face suppressed PsIAA4 PB1 homo-oligomerization in vitro and confirmed directional interaction of full-length PsIAA4 in vivo (yeast two-hybrid system). Mixing of oppositely mutated PsIAA4 PB1 monomers enabled NMR mapping of the negatively charged interface of the reconstituted PsIAA4 PB1 homodimer variant, whose stoichiometry (1:1) and equilibrium binding constant (KD ∼6.4 μM) were determined by isothermal titration calorimetry. In silico protein–protein docking studies based on NMR and yeast interaction data derived a model of the PsIAA4 PB1 homodimer, which is comparable with other PB1 domain dimers, but indicated considerable differences between the homodimeric interfaces of AUX/IAA and ARF PB1 domains. Our study provides an impetus for elucidating the molecular determinants that confer specificity to complex protein–protein interaction circuits between members of the two central families of transcription factors important to the regulation of auxin-responsive gene expression.
Publikation

Ziegler, J.; Qwegwer, J.; Schubert, M.; Erickson, J. L.; Schattat, M.; Bürstenbinder, K.; Grubb, C. D.; Abel, S.; Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization J. Chromatogr. A 1362, 102-109, (2014) DOI: 10.1016/j.chroma.2014.08.029

A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50 mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.
Publikation

Abel, S.; Bürstenbinder, K.; Müller, J.; The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking Plant Signal Behav. 8, e24369, (2013) DOI: 10.4161/psb.24369

Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.
Publikation

Mur, L. A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C.; The Outcomes of Concentration-Specific Interactions between Salicylate and Jasmonate Signaling Include Synergy, Antagonism, and Oxidative Stress Leading to Cell Death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

Salicylic acid (SA) has been proposed to antagonize jasmonic acid (JA) biosynthesis and signaling. We report, however, that in salicylate hydroxylase-expressing tobacco (Nicotiana tabacum) plants, where SA levels were reduced, JA levels were not elevated during a hypersensitive response elicited by Pseudomonas syringae pv phaseolicola. The effects of cotreatment with various concentrations of SA and JA were assessed in tobacco and Arabidopsis (Arabidopsis thaliana). These suggested that there was a transient synergistic enhancement in the expression of genes associated with either JA (PDF1.2 [defensin] and Thi1.2 [thionin]) or SA (PR1 [PR1a-β-glucuronidase in tobacco]) signaling when both signals were applied at low (typically 10–100 μm) concentrations. Antagonism was observed at more prolonged treatment times or at higher concentrations. Similar results were also observed when adding the JA precursor, α-linolenic acid with SA. Synergic effects on gene expression and plant stress were NPR1- and COI1-dependent, SA- and JA-signaling components, respectively. Electrolyte leakage and Evans blue staining indicated that application of higher concentrations of SA + JA induced plant stress or death and elicited the generation of apoplastic reactive oxygen species. This was indicated by enhancement of hydrogen peroxide-responsive AoPR10-β-glucuronidase expression, suppression of plant stress/death using catalase, and direct hydrogen peroxide measurements. Our data suggests that the outcomes of JA-SA interactions could be tailored to pathogen/pest attack by the relative concentration of each hormone.
Publikation

Levy, M.; Rachmilevitch, S.; Abel, S.; Transient Agrobacterium-mediated gene expression in the Arabidopsis hydroponics root system for subcellular localization studies Plant Mol. Biol. Rep. 23, 179-184, (2005) DOI: 10.1007/BF02772708

To a great extent, the cellular compartmentalization and molecular interactions are indicative of the function of a protein. The development of simple and efficient tools for testing the subcellular location of proteins is indispensable to elucidate the function of genes in plants. In this report, we assessed the feasibility ofAgrobacterium-mediated transformation of hydroponically grown roots to follow intracellular targeting of proteins fused to green fluorescent protein (GFP). We developed a simple in planta assay for subcellular localization of proteins inArabidopsis roots via transient transformation and tested this method by expressing a GFP fusion of a known nuclear protein, IQD1. Visualization of transiently expressed GFP fusion proteins in roots by means of confocal microscopy is superior to the analysis of green tissues because the roots are virtually transparent and free of chlorophyll autofluorescence.
Publikation

Ticconi, C. A.; Abel, S.; Short on phosphate: plant surveillance and countermeasures Trends Plant Sci. 9, 548-555, (2004) DOI: 10.1016/j.tplants.2004.09.003

Metabolism depends on inorganic phosphate (Pi) as reactant, allosteric effector and regulatory moiety in covalent protein modification. To cope with Pi shortage (a common situation in many ecosystems), plants activate a set of adaptive responses to enhance Pi recycling and acquisition by reprogramming metabolism and restructuring root system architecture. The physiology of Pi starvation responses has become well understood, and so current research focuses on the initial molecular events that sense, transmit and integrate information about external and internal Pi status. Recent studies have provided evidence for Pi as a signaling molecule and initial insight into the coordination of Pi deficiency responses at the cellular and molecular level.
Publikation

Wasternack, C.; Atzorn, R.; Leopold, J.; Feussner, I.; Rademacher, W.; Parthier, B.; Synthesis of jasmonate-induced proteins in barley (Hordeum vulgare) is inhibited by the growth retardant tetcyclacis Physiol. Plant. 94, 335-341, (1995) DOI: 10.1111/j.1399-3054.1995.tb05320.x

BarJey leaf segments treated with jasmonate respond with the synthesis of specific proseins, referred to as jasmonate‐induced proteins (JIPs). Application of abscisic acid (ABAl also induced JIP synthesis (Weidhase et al. 1987). In this study the effects of inhibitors on sorbitol‐induced increases of endogenous jasmonates and ABA were investigated. The promotion of jasmonates by sorbitol was inhibited by the growth retardant tetcyclacis at concentrations as low as 1 ftM. In parallel with the decrease of jasmonates, JIP gene expression was reduced as reflected by a decline in the level of a 23‐kDa protein UIP‐23) and mRNAs of JIP‐6 and JIP‐23. 12‐Oxo‐phytodienoic acid, an inlermediale in the lipoxygenase (LOX) pathway leading to jasmonic acid was able to overcome the inhibition by tetcyclacis and increases both the endogenous jasmonate content and transcript accumulation. This suggests that tetcyclacis acts upstream of 12‐oxo‐phytodienoic acid and in keeping with this proposal, an increase in relative LOX activity was detected after tetcyclacis treatment. Although tetcyclacis was shown to inhibit the degradation of ABA to phaseic acid, its effect on jasmonate synthesis is much more pronounced.
IPB Mainnav Search