zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 67.

Publikationen in Druck

Frey, M.; Vahabi, K.; Cankar, K.; Lackus, N. D.; Padilla-Gonzalez, F.; Ro, D.-K.; Rieseberg, L.; Spring, O.; Tissier, A.; Sesquiterpene lactones – insights into biosynthesis, regulation and signalling roles Crit. Rev. Plant Sci. 1-27, (2024) DOI: 10.1080/07352689.2024.2307240

Sesquiterpene lactones (STLs) are bitter tasting plant specialized metabolites derived from farnesyl pyrophosphate (FPP) that contain a characteristic lactone ring. STLs can be found in many plant families that are distantly related to each other and outside the plant kingdom. They are especially prevalent in the plant families Apiaceae and Asteraceae, the latter being one of the largest plant families besides the Orchidaceae. The STL diversity is especially large in the Asteraceae, which made them an ideal object for chemosystematic studies in these species. Many STLs show a high bioactivity, for example as protective compounds against herbivory. STLs are also relevant for pharmaceutical applications, such as the treatment of malaria with artemisinin. Recent findings have dramatically changed our knowledge about the biosynthesis of STLs, as well as their developmental, spatial, and environmental regulation. This review intents to update the currently achieved progress in these aspects. With the advancement of genome editing tools such as CRISPR/Cas and the rapid acceleration of the speed of genome sequencing, even deeper insights into the biosynthesis, regulation, and enzyme evolution of STL can be expected in the future. Apart from their role as protective compounds, there may be a more subtle role of STL in regulatory processes of plants that will be discussed as well.
Publikation

Frey, M.; Bathe, U.; Meink, L.; Balcke, G. U.; Schmidt, J.; Frolov, A.; Soboleva, A.; Hassanin, A.; Davari, M. D.; Frank, O.; Schlagbauer, V.; Dawid, C.; Tissier, A.; Combinatorial biosynthesis in yeast leads to over 200 diterpenoids Metab. Eng. 82, 193-200, (2024) DOI: 10.1016/j.ymben.2024.02.006

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.
Publikation

Schindele, P.; Merker, L.; Schreiber, T.; Prange, A.; Tissier, A.; Puchta, H.; Enhancing gene editing and gene targeting efficiencies in Arabidopsis thaliana by using an intron‐containing version of ttLbCas12a Plant Biotechnol. J. 21, 457-459, (2023) DOI: 10.1111/pbi.13964

0
Publikation

Saadat, N. P.; van Aalst, M.; Brand, A.; Ebenhöh, O.; Tissier, A.; Matuszyńska, A. B.; Shifts in carbon partitioning by photosynthetic activity increase terpenoid synthesis in glandular trichomes Plant J. 115, 1716-1728, (2023) DOI: 10.1111/tpj.16352

Several commercially important secondary metabolites are produced and accumulated in high amounts by glandular trichomes, giving the prospect of using them as metabolic cell factories. Due to extremely high metabolic fluxes through glandular trichomes, previous research focused on how such flows are achieved. The question regarding their bioenergetics became even more interesting with the discovery of photosynthetic activity in some glandular trichomes. Despite recent advances, how primary metabolism contributes to the high metabolic fluxes in glandular trichomes is still not fully elucidated. Using computational methods and available multi-omics data, we first developed a quantitative framework to investigate the possible role of photosynthetic energy supply in terpenoid production and next tested experimentally the simulation-driven hypothesis. With this work, we provide the first reconstruction of specialised metabolism in Type-VI photosynthetic glandular trichomes of Solanum lycopersicum. Our model predicted that increasing light intensities results in a shift of carbon partitioning from catabolic to anabolic reactions driven by the energy availability of the cell. Moreover, we show the benefit of shifting between isoprenoid pathways under different light regimes, leading to a production of different classes of terpenes. Our computational predictions were confirmed in vivo, demonstrating a significant increase in production of monoterpenoids while the sesquiterpenes remained unchanged under higher light intensities. The outcomes of this research provide quantitative measures to assess the beneficial role of chloroplast in glandular trichomes for enhanced production of secondary metabolites and can guide the design of new experiments that aim at modulating terpenoid production.
Publikation

Cankar, K.; Hakkert, J. C.; Sevenier, R.; Papastolopoulou, C.; Schipper, B.; Baixinho, J. P.; Fernández, N.; Matos, M. S.; Serra, A. T.; Santos, C. N.; Vahabi, K.; Tissier, A.; Bundock, P.; Bosch, D.; Lactucin synthase inactivation boosts the accumulation of anti-inflammatory 8-deoxylactucin and its derivatives in Chicory (Cichorium intybus L.) J. Agr. Food Chem. 71, 6061-6072, (2023) DOI: 10.1021/acs.jafc.2c08959

For several sesquiterpene lactones (STLs) found in Asteraceae plants, very interesting biomedical activities have been demonstrated. Chicory roots accumulate the guaianolide STLs 8-deoxylactucin, lactucin, and lactucopicrin predominantly in oxalated forms in the latex. In this work, a supercritical fluid extract fraction of chicory STLs containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin was shown to have anti-inflammatory activity in an inflamed intestinal mucosa model. To increase the accumulation of these two compounds in chicory taproots, the lactucin synthase that takes 8-deoxylactucin as the substrate for the regiospecific hydroxylation to generate lactucin needs to be inactivated. Three candidate cytochrome P450 enzymes of the CYP71 clan were identified in chicory. Their targeted inactivation using the CRISPR/Cas9 approach identified CYP71DD33 to have lactucin synthase activity. The analysis of the terpene profile of the taproots of plants with edits in CYP71DD33 revealed a nearly complete elimination of the endogenous chicory STLs lactucin and lactucopicrin and their corresponding oxalates. Indeed, in the same lines, the interruption of biosynthesis resulted in a strong increase of 8-deoxylactucin and its derivatives. The enzyme activity of CYP71DD33 to convert 8-deoxylactucin to lactucin was additionally demonstrated in vitro using yeast microsome assays. The identified chicory lactucin synthase gene is predominantly expressed in the chicory latex, indicating that the late steps in the STL biosynthesis take place in the latex. This study contributes to further elucidation of the STL pathway in chicory and shows that root chicory can be positioned as a crop from which different health products can be extracted.
Publikation

Ai, H.; Bellstaedt, J.; Bartusch, K. S.; Eschen‐Lippold, L.; Babben, S.; Balcke, G. U.; Tissier, A.; Hause, B.; Andersen, T. G.; Delker, C.; Quint, M.; Auxin‐dependent regulation of cell division rates governs root thermomorphogenesis EMBO J. 42, e111926, (2023) DOI: 10.15252/embj.2022111926

Roots are highly plastic organs enabling plants to adapt to a changing below-ground environment. In addition to abiotic factors like nutrients or mechanical resistance, plant roots also respond to temperature variation. Below the heat stress threshold, Arabidopsis thaliana seedlings react to elevated temperature by promoting primary root growth, possibly to reach deeper soil regions with potentially better water saturation. While above-ground thermomorphogenesis is enabled by thermo-sensitive cell elongation, it was unknown how temperature modulates root growth. We here show that roots are able to sense and respond to elevated temperature independently of shoot-derived signals. This response is mediated by a yet unknown root thermosensor that employs auxin as a messenger to relay temperature signals to the cell cycle. Growth promotion is achieved primarily by increasing cell division rates in the root apical meristem, depending on de novo local auxin biosynthesis and temperature-sensitive organization of the polar auxin transport system. Hence, the primary cellular target of elevated ambient temperature differs fundamentally between root and shoot tissues, while the messenger auxin remains the same.
Preprints

Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.; DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in planta bioRxiv (2022) DOI: 10.1101/2022.05.11.491484

DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.
Publikation

Vendemiatti, E.; Therezan, R.; Vicente, M.; Pinto, M.; Bergau, N.; Yang, L.; Bernardi, W.; Alencar, S.; Zsögön, A.; Tissier, A.; Benedito, V.; Peres, L.; The genetic complexity of type-IV trichome development reveals the steps towards an insect-resistant tomato Plants 11, 1309, (2022) DOI: 10.3390/plants11101309

The leaves of the wild tomato Solanum galapagense harbor type-IV glandular trichomes (GT) that produce high levels of acylsugars (AS), conferring insect resistance. Conversely, domesticated tomatoes (S. lycopersicum) lack type-IV trichomes on the leaves of mature plants, preventing high AS production, thus rendering the plants more vulnerable to insect predation. We hypothesized that cultivated tomatoes engineered to harbor type-IV trichomes on the leaves of adult plants could be insect-resistant. We introgressed the genetic determinants controlling type-IV trichome development from S. galapagense into cv. Micro-Tom (MT) and created a line named “Galapagos-enhanced trichomes” (MT-Get). Mapping-by-sequencing revealed that five chromosomal regions of S. galapagense were present in MT-Get. Further genetic mapping showed that S. galapagense alleles in chromosomes 1, 2, and 3 were sufficient for the presence of type-IV trichomes on adult organs but at lower densities. Metabolic and gene expression analyses demonstrated that type-IV trichome density was not accompanied by the AS production and exudation in MT-Get. Although the plants produce a significant amount of acylsugars, those are still not enough to make them resistant to whiteflies. We demonstrate that type-IV glandular trichome development is insufficient for high AS accumulation. The results from our study provided additional insights into the steps necessary for breeding an insect-resistant tomato.
Publikation

Danila, F.; Schreiber, T.; Ermakova, M.; Hua, L.; Vlad, D.; Lo, S.; Chen, Y.; Lambret‐Frotte, J.; Hermanns, A. S.; Athmer, B.; von Caemmerer, S.; Yu, S.; Hibberd, J. M.; Tissier, A.; Furbank, R. T.; Kelly, S.; Langdale, J. A.; A single promoter‐TALE system for tissue‐specific and tuneable expression of multiple genes in rice Plant Biotechnol. J. 20, 1786-1806, (2022) DOI: 10.1111/pbi.13864

In biological discovery and engineering research, there is a need to spatially and/or temporally regulate transgene expression. However, the limited availability of promoter sequences that are uniquely active in specific tissue-types and/or at specific times often precludes co-expression of >multiple transgenes in precisely controlled developmental contexts. Here, we developed a system for use in rice that comprises synthetic designer transcription activator-like effectors (dTALEs) and cognate synthetic TALE-activated promoters (STAPs). The system allows multiple transgenes to be expressed from different STAPs, with the spatial and temporal context determined by a single promoter that drives expression of the dTALE. We show that two different systems—dTALE1-STAP1 and dTALE2-STAP2—can activate STAP-driven reporter gene expression in stable transgenic rice lines, with transgene transcript levels dependent on both dTALE and STAP sequence identities. The relative strength of individual STAP sequences is consistent between dTALE1 and dTALE2 systems but differs between cell-types, requiring empirical evaluation in each case. dTALE expression leads to off-target activation of endogenous genes but the number of genes affected is substantially less than the number impacted by the somaclonal variation that occurs during the regeneration of transformed plants. With the potential to design fully orthogonal dTALEs for any genome of interest, the dTALE-STAP system thus provides a powerful approach to fine-tune the expression of multiple transgenes, and to simultaneously introduce different synthetic circuits into distinct developmental contexts.
Publikation

Cankar, K.; Hakkert, J. C.; Sevenier, R.; Campo, E.; Schipper, B.; Papastolopoulou, C.; Vahabi, K.; Tissier, A.; Bundock, P.; Bosch, D.; CRISPR/Cas9 targeted inactivation of the kauniolide synthase in chicory results in accumulation of costunolide and its conjugates in taproots Front. Plant Sci. 13, 940003, (2022) DOI: 10.3389/fpls.2022.940003

Chicory taproots accumulate sesquiterpene lactones lactucin, lactucopicrin, and 8-deoxylactucin, predominantly in their oxalated forms. The biosynthetic pathway for chicory sesquiterpene lactones has only partly been elucidated; the enzymes that convert farnesyl pyrophosphate to costunolide have been described. The next biosynthetic step of the conversion of costunolide to the tricyclic structure, guaianolide kauniolide, has so far not been elucidated in chicory. In this work three putative kauniolide synthase genes were identified in chicory named CiKLS1, CiKLS2, and CiKLS3. Their activity to convert costunolide to kauniolide was demonstrated in vitro using yeast microsome assays. Next, introduction of CRISPR/Cas9 reagents into chicory protoplasts was used to inactivate multiple chicory KLS genes and several chicory lines were successfully regenerated. The inactivation of the kauniolide synthase genes in chicory by the CRISPR/Cas9 approach resulted in interruption of the sesquiterpene lactone biosynthesis in chicory leaves and taproots. In chicory taproots, but not in leaves, accumulation of costunolide and its conjugates was observed to high levels, namely 1.5 mg/g FW. These results confirmed that all three genes contribute to STL accumulation, albeit to different extent. These observations demonstrate that three genes oriented in tandem on the chicory genome encode kauniolide synthases that initiate the conversion of costunolide toward the sesquiterpene lactones in chicory.
IPB Mainnav Search