zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 34.

Publikation

Wolfram, K.; Schmidt, J.; Wray, V.; Milkowski, C.; Schliemann, W.; Strack, D.; Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus) Phytochemistry 71, 1076-1084, (2010) DOI: 10.1016/j.phytochem.2010.04.007

A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C6–C3-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.
Publikation

Schliemann, W.; Ammer, C.; Strack, D.; Metabolite profiling of mycorrhizal roots of Medicago truncatula Phytochemistry 69, 112-146, (2008) DOI: 10.1016/j.phytochem.2007.06.032

Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC–MS, HPLC and LC–MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots.Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Publikation

Schliemann, W.; Ammer, C.; Strack, D.; Erratum to “Metabolite profiling of mycorrhizal roots of Medicago truncatula” [Phytochemistry 69 (2008) 112–146] Phytochemistry 69, 1446-1447, (2008) DOI: 10.1016/j.phytochem.2008.02.004

0
Publikation

Schliemann, W.; Kolbe, B.; Schmidt, J.; Nimtz, M.; Wray, V.; Accumulation of apocarotenoids in mycorrhizal roots of leek (Allium porrum) Phytochemistry 69, 1680-1688, (2008) DOI: 10.1016/j.phytochem.2008.02.015

Colonization of the roots of leek (Allium porrum L.) by the arbuscular mycorrhizal fungus Glomus intraradices induced the formation of apocarotenoids, whose accumulation has been studied over a period of 25 weeks. Whereas the increase in the levels of the dominating cyclohexenone derivatives resembles the enhancement of root length colonization, the content of mycorradicin derivatives remains relatively low throughout. Structural analysis of the cyclohexenone derivatives by mass spectrometry and NMR spectroscopy showed that they are mono- and diglycosides of 13-hydroxyblumenol C and blumenol C acylated with 3-hydroxy-3-methyl-glutaric and/or malonic acid. Along with the isolation of three known compounds five others are shown to be hitherto unknown members of the fast-growing family of mycorrhiza-induced cyclohexenone conjugates.
Publikation

Kopycki, J. G.; Stubbs, M. T.; Brandt, W.; Hagemann, M.; Porzel, A.; Schmidt, J.; Schliemann, W.; Zenk, M. H.; Vogt, T.; Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 J. Biol. Chem. 283, 20888-20896, (2008) DOI: 10.1074/jbc.M801943200

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Publikation

Floss, D. S.; Schliemann, W.; Schmidt, J.; Strack, D.; Walter, M. H.; RNA Interference-Mediated Repression of MtCCD1 in Mycorrhizal Roots of Medicago truncatula Causes Accumulation of C27 Apocarotenoids, Shedding Light on the Functional Role of CCD1 Plant Physiol. 148, 1267-1282, (2008) DOI: 10.1104/pp.108.125062

Tailoring carotenoids by plant carotenoid cleavage dioxygenases (CCDs) generates various bioactive apocarotenoids. Recombinant CCD1 has been shown to catalyze symmetrical cleavage of C40 carotenoid substrates at 9,10 and 9′,10′ positions. The actual substrate(s) of the enzyme in planta, however, is still unknown. In this study, we have carried out RNA interference (RNAi)-mediated repression of a Medicago truncatula CCD1 gene in hairy roots colonized by the arbuscular mycorrhizal (AM) fungus Glomus intraradices. As a consequence, the normal AM-mediated accumulation of apocarotenoids (C13 cyclohexenone and C14 mycorradicin derivatives) was differentially modified. Mycorradicin derivatives were strongly reduced to 3% to 6% of the controls, while the cyclohexenone derivatives were only reduced to 30% to 47%. Concomitantly, a yellow-orange color appeared in RNAi roots. Based on ultraviolet light spectra and mass spectrometry analyses, the new compounds are C27 apocarotenoic acid derivatives. These metabolic alterations did not lead to major changes in molecular markers of the AM symbiosis, although a moderate shift to more degenerating arbuscules was observed in RNAi roots. The unexpected outcome of the RNAi approach suggests C27 apocarotenoids as the major substrates of CCD1 in mycorrhizal root cells. Moreover, literature data implicate C27 apocarotenoid cleavage as the general functional role of CCD1 in planta. A revised scheme of plant carotenoid cleavage in two consecutive steps is proposed, in which CCD1 catalyzes only the second step in the cytosol (C27 → C14 + C13), while the first step (C40 → C27 + C13) may be catalyzed by CCD7 and/or CCD4 inside plastids.
Publikation

Stintzing, F.; Schliemann, W.; Pigments of Fly Agaric (Amanita muscaria) Z. Naturforsch. C 62, 779-785, (2007) DOI: 10.1515/znc-2007-11-1201

The complex pigment pattern of fly agaric (Amanita muscaria) cap skins has been studied by LC-DAD and mass spectrometry. Among the betaxanthins the corresponding derivatives of serine, threonine, ethanolamine, alanine, Dopa, phenylalanine and tryptophan are reported for the first time to contribute to the pigment pattern of fly agarics. Betalamic acid, the chromophoric precursor of betaxanthins and betacyanins, muscaflavin and seco-dopas were also detected. Furthermore, the red-purple muscapurpurin and the red muscarubrin were tentatively assigned while further six betacyanin-like components could not be structurally allocated. Stability studies indicated a high susceptibility of pigment extracts to degradation which led to rapid colour loss thus rendering a complete characterization of betacyaninlike compounds impossible at present. Taking into account these difficulties the presented results may be a starting point for a comprehensive characterization of the pigment composition of fly agarics.
Publikation

Schliemann, W.; Schneider, B.; Wray, V.; Schmidt, J.; Nimtz, M.; Porzel, A.; Böhm, H.; Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule Phytochemistry 67, 191-201, (2006) DOI: 10.1016/j.phytochem.2005.11.002

From yellow petals of Iceland poppy, besides the known flavonoid gossypitrin, seven kaempferol derivatives were isolated. In addition to kaempferol 3-O-β-sophoroside and kaempferol 3-O-β-sophoroside-7-O-β-glucoside, known from other plants, the mono- and dimalonyl conjugates of the latter were identified by MS and NMR spectroscopy. Structure analyses of a set of co-occurring pigments, the nudicaulins, revealed that they have the identical acylated glycoside moieties attached to a pentacyclic indole alkaloid skeleton for which the structure of 19-(4-hydroxyphenyl)-10H-1,10-ethenochromeno[2,3-b]indole-6,8,18-triol was deduced from MS and NMR as well as chemical and chiroptical methods.
Publikation

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Erratum to “Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum” [Phytochem. 67 (2006) 1196–1205] Phytochemistry 67, 2090, (2006) DOI: 10.1016/j.phytochem.2006.07.018

0
Publikation

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum Phytochemistry 67, 1196-1205, (2006) DOI: 10.1016/j.phytochem.2006.05.005

Colonization of roots of Ornithogalum umbellatum by the arbuscular mycorrhizal fungus Glomus intraradices induced the accumulation of different types of apocarotenoids. In addition to the mycorrhiza-specific occurrence of cyclohexenone derivatives and the “yellow pigment” described earlier, free mycorradicin and numerous mycorradicin derivatives were detected in a complex apocarotenoid mixture for the first time. From the accumulation pattern of the mycorradicin derivatives their possible integration into the continuously accumulating “yellow pigment” is suggested. Structure analyses of the cyclohexenone derivatives by MS and NMR revealed that they are mono-, di- and branched triglycosides of blumenol C, 13-hydroxyblumenol C, and 13-nor-5-carboxy-blumenol C, some of which contain terminal rhamnose as sugar moiety.
IPB Mainnav Search