zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 35.

Publikationen in Druck

Erickson, J. L.; Prautsch, J.; Reynvoet, F.; Niemeyer, F.; Hause, G.; Johnston, I. G.; Schattat, M. H.; Stromule geometry allows optimal spatial regulation of organelle interactions in the quasi-2D cytoplasm Plant Cell Physiol. (2023) DOI: 10.1093/pcp/pcad098

In plant cells, plastids form elongated extensions called stromules, the regulation and purposes of which remain unclear. Here, we quantitatively explore how different stromule structures serve to enhance the ability of a plastid to interact with other organelles: increasing the effective space for interaction and biomolecular exchange between organelles. Interestingly, electron microscopy and confocal imaging showed that the cytoplasm in Arabidopsis thaliana and Nicotiana benthamiana epidermal cells is extremely thin (around 100 nm in regions without organelles), meaning that inter-organelle interactions effectively take place in 2D. We combine these imaging modalities with mathematical modeling and new in planta experiments to demonstrate how different stromule varieties (single or multiple, linear or branching) could be employed to optimize different aspects of inter-organelle interaction capacity in this 2D space. We found that stromule formation and branching provide a proportionally higher benefit to interaction capacity in 2D than in 3D. Additionally, this benefit depends on optimal plastid spacing. We hypothesize that cells can promote the formation of different stromule architectures in the quasi-2D cytoplasm to optimize their interaction interface to meet specific requirements. These results provide new insight into the mechanisms underlying the transition from low to high stromule numbers, the consequences for interaction with smaller organelles, how plastid access and plastid to nucleus signaling are balanced and the impact of plastid density on organelle interaction.
Publikation

Jäckel, L.; Schnabel, A.; Stellmach, H.; Klauß, U.; Matschi, S.; Hause, G.; Vogt, T.; The terminal enzymatic step in piperine biosynthesis is co‐localized with the product piperine in specialized cells of black pepper (Piper nigrum L.) Plant J. 111, 731–747, (2022) DOI: 10.1111/tpj.15847

Piperine (1-piperoyl piperidine) is responsible for the pungent perception of dried black pepper (Pipernigrum) fruits and essentially contributes to the aromatic properties of this spice in combination with ablend of terpenoids. The final step in piperine biosynthesis involves piperine synthase (PS), which catalyzesthe reaction of piperoyl CoA and piperidine to the biologically active and pungent amide. Nevertheless, experimental data on the cellular localization of piperine and the complete biosynthetic pathway are missing. Not only co-localization of enzymes and products, but also potential transport of piperamides to thesink organs is a possible alternative. This work, which includes purification of the native enzyme, immunolocalization, laser microdissection, fluorescence microscopy, and electron microscopy combinedwith liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), providesexperimental evidence that piperine and PS are co-localized in specialized cells of the black pepper fruit peri-sperm. PS accumulates during early stages of fruit development and its level declines before the fruits arefully mature. The product piperine is co-localized to PS and can be monitored at the cellular level by itsstrong bluish fluorescence. Rising piperine levels during fruit maturation are consistent with the increasingnumbers of fluorescent cells within the perisperm. Signal intensities of individual laser-dissected cells whenmonitored by LC-ESI-MS/MS indicate molar concentrations of this alkaloid. Significant levels of piperineand additional piperamides were also detected in cells distributed in the cortex of black pepper roots. Insummary, the data provide comprehensive experimental evidence of and insights into cell-specific biosyn-thesis and storage of piperidine alkaloids, specific and characteristic for the Piperaceae. By a combination offluorescence microscopy and LC-MS/MS analysis we localized the major piperidine alkaloids to specific cellsof the fruit perisperm and the root cortex. Immunolocalization of native piperine and piperamide synthasesshows that enzymes are co-localized with high concentrations of products in these idioblasts.
Publikation

He, J.; Yang, B.; Hause, G.; Rössner, N.; Peiter-Volk, T.; Schattat, M. H.; Voiniciuc, C.; Peiter, E.; The trans-Golgi-localized protein BICAT3 regulates manganese allocation and matrix polysaccharide biosynthesis Plant Physiol. 190, 2579-2600, (2022) DOI: 10.1093/plphys/kiac387

Abstract Manganese (Mn2+) is essential for a diversity of processes, including photosynthetic water splitting and the transfer of glycosyl moieties. Various Golgi-localized glycosyltransferases that mediate cell wall matrix polysaccharide biosynthesis are Mn2+ dependent, but the supply of these enzymes with Mn2+ is not well understood. Here, we show that the BIVALENT CATION TRANSPORTER 3 (BICAT3) localizes specifically to trans-cisternae of the Golgi. In agreement with a role in Mn2+ and Ca2+ homeostasis, BICAT3 rescued yeast (Saccharomyces cerevisiae) mutants defective in their translocation. Arabidopsis (Arabidopsis thaliana) knockout mutants of BICAT3 were sensitive to low Mn2+ and high Ca2+ availability and showed altered accumulation of these cations. Despite reduced cell expansion and leaf size in Mn2+-deficient bicat3 mutants, their photosynthesis was improved, accompanied by an increased Mn content of chloroplasts. Growth defects of bicat3 corresponded with an impaired glycosidic composition of matrix polysaccharides synthesized in the trans-Golgi. In addition to the vegetative growth defects, pollen tube growth of bicat3 was heterogeneously aberrant. This was associated with a severely reduced and similarly heterogeneous pectin deposition and caused diminished seed set and silique length. Double mutant analyses demonstrated that the physiological relevance of BICAT3 is distinct from that of ER-TYPE CA2+-ATPASE 3, a Golgi-localized Mn2+/Ca2+-ATPase. Collectively, BICAT3 is a principal Mn2+ transporter in the trans-Golgi whose activity is critical for specific glycosylation reactions in this organelle and for the allocation of Mn2+ between Golgi apparatus and chloroplasts.
Publikation

Brillada, C.; Teh, O.-K.; Ditengou, F. A.; Lee, C.-W.; Klecker, T.; Saeed, B.; Furlan, G.; Zietz, M.; Hause, G.; Eschen-Lippold, L.; Hoehenwarter, W.; Lee, J.; Ott, T.; Trujillo, M.; Exocyst subunit Exo70B2 is linked to immune signaling and autophagy Plant Cell 33, 404-419, (2021) DOI: 10.1093/plcell/koaa022

During the immune response, activation of the secretory pathway is key to mounting an effective response, while gauging its output is important to maintain cellular homeostasis. The Exo70 subunit of the exocyst functions as a spatiotemporal regulator by mediating numerous interactions with proteins and lipids. However, a molecular understanding of the exocyst regulation remains challenging. We show that, in Arabidopsis thaliana, Exo70B2 behaves as a bona fide exocyst subunit. Conversely, treatment with the salicylic acid (SA) defence hormone analog benzothiadiazole (BTH), or the immunogenic peptide flg22, induced Exo70B2 transport into the vacuole. We reveal that Exo70B2 interacts with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) via two ATG8-interacting motives (AIMs) and its transport into the vacuole is dependent on autophagy. In line with its role in immunity, we discovered that Exo70B2 interacted with and was phosphorylated by the kinase MPK3. Mimicking phosphorylation had a dual impact on Exo70B2: first, by inhibiting localization at sites of active secretion, and second, it increased the interaction with ATG8. Phosphonull variants displayed higher effector-triggered immunity (ETI) and were hypersensitive to BTH, which induce secretion and autophagy. Our results suggest a molecular mechanism by which phosphorylation diverts Exo70B2 from the secretory into the autophagy pathway for its degradation, to dampen secretory activity.
Publikation

Tabassum, N.; Eschen-Lippold, L.; Athmer, B.; Baruah, M.; Brode, M.; Maldonado-Bonilla, L. D.; Hoehenwarter, W.; Hause, G.; Scheel, D.; Lee, J.; Phosphorylation‐dependent control of an RNA granule‐localized protein that fine‐tunes defence gene expression at a post‐transcriptional level Plant J. 101, 1023-1039, (2020) DOI: 10.1111/tpj.14573

Mitogen‐activated protein kinase (MAPK) cascades are key signalling modules of plant defence responses to pathogen‐associated molecular patterns (PAMPs, e.g. bacterial flg22 peptide). The Tandem Zinc Finger Protein 9 (TZF9) is an RNA‐binding protein that is phosphorylated by two PAMP‐responsive MAPKs, MPK3 and MPK6. We mapped the major phosphosites in TZF9 and showed their importance for controlling in vitro RNA‐binding activity, in vivo flg22‐induced rapid disappearance of TZF9‐labelled processing body‐like structures and TZF9 protein turnover. Microarray analysis showed a strong discordance between transcriptome (total mRNA) and translatome (polysome‐associated mRNA) in the tzf9 mutant, with more mRNAs associated to ribosomes in the absence of TZF9. This suggests that TZF9 may sequester and inhibit translation of subsets of mRNAs. Fittingly, TZF9 physically interacts with poly(A)‐binding protein 2 (PAB2), a hallmark constituent of stress granules – a site for stress‐induced translational stalling/arrest. TZF9 even promotes stress granule assembly in the absence of stress. Hence, MAPKs may control defence gene expression post‐transcriptionally through release from translation arrest within TZF9‐PAB2‐containing RNA granules or perturbing PAB2 functions in translation control (e.g. in the mRNA closed‐loop model of translation).
Publikation

Rödiger, A.; Galonska, J.; Bergner, E.; Agne, B.; Helm, S.; Alseekh, S.; Fernie, A. R.; Thieme, D.; Hoehenwarter, W.; Hause, G.; Pfannschmidt, T.; Baginsky, S.; Working day and night: plastid casein kinase 2 catalyses phosphorylation of proteins with diverse functions in light‐ and dark‐adapted plastids Plant J. 104, 546-558, (2020) DOI: 10.1111/tpj.14944

Casein kinase 2 is a ubiquitous protein kinase that has puzzled researchers for several decades because of its pleiotropic activity. Here, we set out to identify the in vivo targets of plastid casein kinase 2 (pCK2) in Arabidopsis thaliana. Survey phosphoproteome analyses were combined with targeted analyses with wild-type and pck2 knockdown mutants to identify potential pCK2 targets by their decreased phosphorylation state in the mutant. To validate potential substrates, we complemented the pck2 knockdown line with tandem affinity tag (TAP)-tagged pCK2 and found it to restore growth parameters, as well as many, but not all, putative pCK2-dependent phosphorylation events. We further performed a targeted analysis at the end-of-night to increase the specificity of target protein identification. This analysis confirmed light-independent phosphorylation of several pCK2 target proteins. Based on the aforementioned data, we define a set of in vivo pCK2-targets that span different chloroplast functions, such as metabolism, transcription, translation and photosynthesis. The pleiotropy of pCK2 functions is also manifested by altered state transition kinetics during short-term acclimation and significant alterations in the mutant metabolism, supporting its function in photosynthetic regulation. Thus, our data expand our understanding on chloroplast phosphorylation networks and provide insights into kinase networks in the regulation of chloroplast functions.
Publikation

Grunewald, S.; Marillonnet, S.; Hause, G.; Haferkamp, I.; Neuhaus, H. E.; Veß, A.; Hollemann, T.; Vogt, T.; The Tapetal Major Facilitator NPF2.8 is Required for Accumulation of Flavonol Glycosides on the Pollen Surface in Arabidopsis thaliana Plant Cell 32, 1727-1748, (2020) DOI: 10.1105/tpc.19.00801

The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Whereas the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear, how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that AtNPF2.8, a member of the nitrate/peptide NTR/PTR family of transporters is required for accumulation and transport of pollen-specific flavonol 3-O-sophorosides, characterized by a glycosidic β-1,2-linkage, to the pollen surface of Arabidopsis. Ectopic, transient expression of this flavonol sophoroside transporter, termed AtFST1, fused to green fluorescent protein (GFP) demonstrated localization of AtFST1 at the plasmalemma in epidermal leaf cells of Nicotiana benthamiana whereas the tapetum-specific AtFST1-expression was confirmed by promAtFST1:GFP-reporter lines. In vitro characterization of AtFST1-activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1-line by complementation with a genomic fragment of the AtFST1 gene restored flavonol glycoside accumulation of pollen grains to wild-type levels corroborating the requirement of AtFST1 for transport of flavonol-3-O-sophorosides from the tapetum to the pollen surface.
Publikation

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S.; The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy Plant Physiol. 179, 460-476, (2019) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Publikation

Hussain, H.; Ziegler, J.; Hause, G.; Wohlrab, J.; Neubert, R. H.; Quantitative Analysis of Free Amino Acids and Urea Derived from Isolated Corneocytes of Healthy Young, Healthy Aged, and Diseased Skin Skin Pharmacol. Physiol. 32, 94-100, (2019) DOI: 10.1159/000495992

Background/Aims: Free amino acids (FAAs) and urea, present inside the corneocytes, can be important indicators of skin condition. However, due to the lack of a standard extraction protocol for FAAs from corneocytes, conflicting research results have been reported. Therefore, the purpose of this study was (1) to standardize the extraction protocol and (2) to investigate FAA profiles in healthy young and healthy old volunteers, as well as in psoriasis and atopic dermatitis patients. Methods: Skin samples were collected from four groups (healthy young, healthy old, and psoriasis and atopic dermatitis patients) with 5 volunteers per group. Corneocytes were isolated and examined microscopically. FAAs and urea were extracted from the isolated corneocytes, and their amounts were quantified using LC-ESI/MS/MS (after derivatization with Fmoc-Cl) and colorimetric methods, respectively. Results: The micrographs of the corneocytes showed no morphological features attributable to age or disease conditions. The highest and lowest concentrations of total FAAs and urea were observed in the healthy old group and the healthy young group, respectively. Unlike the other FAAs and urea, citrulline was found at a higher level in the healthy young group than in the disease groups. Conclusion: This study suggests that the levels of FAAs and urea in the skin are affected by age and skin conditions (healthy/diseased). However, further studies are needed to show the effects of different skin conditions on the levels of FAAs and urea.
Publikation

Eisermann, I.; Weihmann, F.; Krijger, J.; Kröling, C.; Hause, G.; Menzel, M.; Pienkny, S.; Kiesow, A.; Deising, H. B.; Wirsel, S. G. R.; Two genes in a pathogenicity gene cluster encoding secreted proteins are required for appressorial penetration and infection of the maize anthracnose fungus Colletotrichum graminicola Environ. Microbiol. 21, 4773-4791, (2019) DOI: 10.1111/1462-2920.14819

To avoid pathogen‐associated molecular pattern recognition, the hemibiotrophic maize pathogen Colletotrichum graminicola secretes proteins mediating the establishment of biotrophy. Targeted deletion of 26 individual candidate genes and seven gene clusters comprising 32 genes of C. graminicola identified a pathogenicity cluster (CLU5) of five co‐linear genes, all of which, with the exception of CLU5b, encode secreted proteins. Targeted deletion of all genes of CLU5 revealed that CLU5a and CLU5d are required for full appressorial penetration competence, with virulence deficiencies independent of the host genotype and organ inoculated. Cytorrhysis experiments and microscopy showed that Δclu5a mutants form pressurized appressoria, but they are hampered in forming penetration pores and fail to differentiate a penetration peg. Whereas Δclu5d mutants elicited WT‐like papillae, albeit at increased frequencies, papillae induced by Δclu5a mutants were much smaller than those elicited by the WT. Synteny of CLU5 is not only conserved in Colletotrichum spp. but also in additional species of Sordariomycetes including insect pathogens and saprophytes suggesting importance of CLU5 for fungal biology. Since CLU5a and CLU5d also occur in non‐pathogenic fungi and since they are expressed prior to plant invasion and even in vegetative hyphae, the encoded proteins probably do not act primarily as effectors.
IPB Mainnav Search