zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 111 bis 120 von 1151.

Publikation

Zanatta, N.; Mittersteiner, M.; Aquino, E. C.; Budragchaa, T.; Wessjohann, L. A.; Bonacorso, H. G.; Martins, M. A. P.; Synthesis of methylene-bridged trifluoromethyl azoles using 5-(1,2,3-Triazol-1-yl)enones Synthesis 54, 439-450, (2022) DOI: 10.1055/s-0040-1719837

A protocol for synthesizing triazole-containing pyrazolines and pyrazoles selectively using trifluoromethylated 5-(1,2,3-triazol-1-yl)enones as starting materials, is reported. The selectivity of the reaction was controlled by the nature of the hydrazine or derivative used: free hydrazines furnished the 1,5-regiosiomer exclusively in yields up to 98%, whereas protected hydrazines provided the 1,3-regioisomer in yields up to 77%. To demonstrate the synthetic versatility of the triazole-based enone, reactions with other unsymmetrical dinucleophiles (hydroxylamine hydrochloride and S-methyl isothiourea sulfates) allowed the selective preparation of triazole-containing isoxazoline and pyrimidine rings.
Publikation

Wittmund, M.; Cadet, F.; Davari, M. D.; Learning epistasis and residue coevolution patterns: Current trends and future perspectives for advancing enzyme engineering ACS Catal. 12, 14243-14263, (2022) DOI: 10.1021/acscatal.2c01426

Engineering proteins and enzymes with the desired functionality has broad applications in molecular biology, biotechnology, biomedical sciences, health, and medicine. The vastness of protein sequence space and all the possible proteins it represents can pose a considerable barrier for enzyme engineering campaigns through directed evolution and rational design. The nonlinear effects of coevolution between amino acids in protein sequences complicate this further. Data-driven models increasingly provide scientists with the computational tools to navigate through the largely undiscovered forest of protein variants and catch a glimpse of the rules and effects underlying the topology of sequence space. In this review, we outline a complete theoretical journey through the processes of protein engineering methods such as directed evolution and rational design and reflect on these strategies and data-driven hybrid strategies in the context of sequence space. We discuss crucial phenomena of residue coevolution, such as epistasis, and review the history of models created over the past decade, aiming to infer rules of protein evolution from data and use this knowledge to improve the prediction of the structure− function relationship of proteins. Data-driven models based on deep learning algorithms are among the most promising methods that can account for the nonlinear phenomena of sequence space to some degree. We also critically discuss the available models to predict evolutionary coupling and epistatic effects (classical and deep learning) in terms of their capabilities and limitations. Finally, we present our perspective on possible future directions for developing data-driven approaches and provide key orientation points and necessities for the future of the fast-evolving field of enzyme engineering.
Publikation

Weigel, B.; Ludwig, J.; Weber, R. A.; Ludwig, S.; Lennicke, C.; Schrank, P.; Davari, M. D.; Nagia, M.; Wessjohann, L. A.; Heterocyclic and alkyne terpenoids by terpene synthase‐mediated biotransformation of non‐natural prenyl diphosphates: Access to new fragrances and probes ChemBioChem 23, e202200211, (2022) DOI: 10.1002/cbic.202200211

Terpene synthase-mediated biotransformation of eleven synthetic sulfur- or oxygen-containing non-natural prenyl diphosphates resulted in the formation of five novel terpenoids and analogues. Uniquely, they trap intermediate steps and form heterocycles or compounds with alkyne side chains. Computational modelling differentiates convertible from inconvertible substrates and thereby provides an understanding of the detailed molecular mechanism of terpene cyclases. Two terpene cyclases were used as biocatalytic tool, namely, limonene synthase from Cannabis sativa (CLS) and 5-epi-aristolochene synthase (TEAS) from Nicotiana tabacum. They showed significant substrate flexibility towards non-natural prenyl diphosphates to form novel terpenoids, including core oxa- and thia-heterocycles and alkyne-modified terpenoids. We elucidated the structures of five novel monoterpene-analogues and a known sesquiterpene-analogue. These results reflected the terpene synthases′ ability and promiscuity to broaden the pool of terpenoids with structurally complex analogues. Docking studies highlight an on-off conversion of the unnatural substrates.
Publikation

Sun, X.; Chen, L.; Yan, H.; Cui, L.; Hussain, H.; Xie, L.; Liu, J.; Jiang, Y.; Meng, Z.; Cao, G.; Park, J.; Wang, D.; An efficient high‐speed counter‐current chromatography method for the preparative separation of potential antioxidant from Paeonia lactiflora Pall. combination of in vitro evaluation and molecular docking J Sep Sci 45, 1856-1865, (2022) DOI: 10.1002/jssc.202200082

Paeonia lactiflora Pall., one of the most famous classical herbal medicine, has been used to treat diseases for over 1200 years. In this research, the functional ingredients were purified by online-switch two-dimensional high-speed counter-current chromatography combined with inner-recycling and continuous injection mode. The antioxidant activity was evaluated by investigating the 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidant damage in vitro and confirmed through molecular docking. n-Butanol/ethyl acetate/water (2:3:5, v/v) solvent system was used for the first dimensional separation and optimized the sample loading. Two pure compounds and a polyphenol-enriched fraction were separated. The polyphenol-enriched fraction was separated with a solvent system n-hexane/ethyl acetate/methanol/water (2:8:4:6, v/v) with continuous injection mode. Five compounds were successfully separated, including gallic acid (1), methyl gallate (2), albiflorin (3), paeoniflorin (4), and ethyl gallate (5). Their structures were identified by mass spectrometry and nuclear magnetic resonance. The results from antioxidant effect showed that albiflorin had stronger antioxidant activity. Molecular docking results indicated that the affinity energy of the identified compounds ranged from -3.79 to -8.22 kcal/mol and albiflorin showed the lowest affinity energy. Overall, all those findings suggested that the strong antioxidant capacity of albiflorin can be potentially used for treatment of diseases that caused by oxidation.
Publikation

Soboleva, A.; Frolova, N.; Bureiko, K.; Shumilina, J.; Balcke, G. U.; Zhukov, V. A.; Tikhonovich, I. A.; Frolov, A.; Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress Int. J. Mol. Sci. 23, 2726, (2022) DOI: 10.3390/ijms23052726

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants’ response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Publikation

Smolikova, G.; Strygina, K.; Krylova, E.; Vikhorev, A.; Bilova, T.; Frolov, A.; Khlestkina, E.; Medvedev, S.; Seed-to-seedling transition in Pisum sativum L.: A transcriptomic approach Plants 11, 1686, (2022) DOI: 10.3390/plants11131686

The seed-to-seedling transition is a crucial step in the plant life cycle. The transition occurs at the end of seed germination and corresponds to the initiation of embryonic root growth. To improve our understanding of how a seed transforms into a seedling, we germinated the Pisum sativum L. seeds for 72 h and divided them into samples before and after radicle protrusion. Before radicle protrusion, seeds survived after drying and formed normally developed seedlings upon rehydration. Radicle protrusion increased the moisture content level in seed axes, and the accumulation of ROS first generated in the embryonic root and plumule. The water and oxidative status shift correlated with the desiccation tolerance loss. Then, we compared RNA sequencing-based transcriptomics in the embryonic axes isolated from pea seeds before and after radicle protrusion. We identified 24,184 differentially expressed genes during the transition to the post-germination stage. Among them, 2101 genes showed more prominent expression. They were related to primary and secondary metabolism, photosynthesis, biosynthesis of cell wall components, redox status, and responses to biotic stress. On the other hand, 415 genes showed significantly decreased expression, including the groups related to water deprivation (eight genes) and response to the ABA stimulus (fifteen genes). We assume that the water deprivation group, especially three genes also belonging to ABA stimulus (LTI65, LTP4, and HVA22E), may be crucial for the desiccation tolerance loss during a metabolic switch from seed to seedling. The latter is also accompanied by the suppression of ABA-related transcription factors ABI3, ABI4, and ABI5. Among them, HVA22E, ABI4, and ABI5 were highly conservative in functional domains and showed homologous sequences in different drought-tolerant species. These findings elaborate on the critical biochemical pathways and genes regulating seed-to-seedling transition.
Publikation

Shah, M. A.; Uddin, A.; Shah, M. R.; Ali, I.; Ullah, R.; Hannan, P. A.; Hussain, H.; Synthesis and characterization of novel hydrazone derivatives of isonicotinic hydrazide and their evaluation for antibacterial and cytotoxic potential Molecules 27, 6770, (2022) DOI: 10.3390/molecules27196770

Hydrazones are active compounds having an azomethine –NHN=CH group and are widely studied owing to their ease of preparation and diverse pharmacological benefits. Novel isonicotinic hydrazone derivatives of vanillin aldehyde and salicyl aldehyde were synthesized that had azomethine linkages and were characterized by UV–Visible, FTIR, EI-MS, 1H-NMR and 13C-NMR spectroscopy. The compounds were screened for their antibacterial activity against Staphylococcus aureus, Bacillus subtilus, and Escherichia coli using disc diffusion and minimum inhibitory concentration (MIC) methods. For cytotoxicity, a brine shrimp lethality test was performed to calculate the lethal concentration (LC50). The results demonstrated appreciable antibacterial activities against the applied strains, amongst which the compounds coded NH3 and NH5 showed maximum inhibition and MIC responses. In terms of cytotoxic activity, the maximum effect was observed in compound NH5 and NH6 treatments with minimum survival percentages of 36.10 ± 3.45 and 32.44 ± 2.0, respectively. These hydrazones could be potential candidates in antitumorigenic therapy against various human cancer cells.
Publikation

Rajakumara, E.; Abhishek, S.; Nitin, K.; Saniya, D.; Bajaj, P.; Schwaneberg, U.; Davari, M. D.; Structure and cooperativity in substrate–enzyme interactions: Perspectives on enzyme engineering and inhibitor design ACS Chem. Biol. 17, 266-280, (2022) DOI: 10.1021/acschembio.1c00500

Enzyme-based synthetic chemistry provides a green way to synthesize industrially important chemical scaffolds and provides incomparable substrate specificity and unmatched stereo-, regio-, and chemoselective product formation. However, using biocatalysts at an industrial scale has its challenges, like their narrow substrate scope, limited stability in large-scale one-pot reactions, and low expression levels. These limitations can be overcome by engineering and fine-tuning these biocatalysts using advanced protein engineering methods. A detailed understanding of the enzyme structure and catalytic mechanism and its structure–function relationship, cooperativity in binding of substrates, and dynamics of substrate–enzyme–cofactor complexes is essential for rational enzyme engineering for a specific purpose. This Review covers all these aspects along with an in-depth categorization of various industrially and pharmaceutically crucial bisubstrate enzymes based on their reaction mechanisms and their active site and substrate/cofactor-binding site structures. As the bisubstrate enzymes constitute around 60% of the known industrially important enzymes, studying their mechanism of actions and structure–activity relationship gives significant insight into deciding the targets for protein engineering for developing industrial biocatalysts. Thus, this Review is focused on providing a comprehensive knowledge of the bisubstrate enzymes’ structure, their mechanisms, and protein engineering approaches to develop them into industrial biocatalysts.
Publikation

Quimque, M. T. J.; Magsipoc, R. J. Y.; Llames, L. C. J.; Flores, A. I. G.; Garcia, K. Y. M.; Ratzenböck, A.; Hussain, H.; Macabeo, A. P. G.; Polyoxygenated cyclohexenes from Uvaria grandiflora with multi-enzyme targeting properties relevant in Type 2 Diabetes and Obesity ACS Omega 7, 36856-36864, (2022) DOI: 10.1021/acsomega.2c05544

Shikimic acid-derived polyoxygenated cyclohexene natural products commonly occurring in several species of the Uvaria represent natural products with promising biological activities. While a number of derivatives have been reported from Uvaria grandiflora (U. grandiflora), further studies are needed to discover additional bioactive congeners, particularly derivatives with multi-protein tarUvaria grandiflora (U. grandiflora)Uvaria grandiflora (U. grandiflora)d in diseases such as diabetes and obesity. In this paper, isolation and identification of a new highly oxygenated cyclohexene, uvagrandol (1), along with the known compound (-)-zeylenone (2) from the DCM sub-extract of U. grandiflora following in vitro and in silico assessment of their enzyme inhibitory properties against α-glucosidase, dipeptidyl peptidase IV, porcine lipase, and human recombinant monoacylglycerol lipase are reported. The structure of 1 was elucidated using 1D and 2D NMR data analysis. The absolute configuration of 1 was established by quantum chemical calculations via the Gauge-Independent Atomic Orbital (GIAO) NMR method followed by TDDFT-Electronic Circular Dichroism (ECD) calculations. The structures of the eight possible stereoisomers were optimized by means of DFT calculations (B3LYP/6-31+G[d,p] in vacuum), and then their isotropic shielding tensors were obtained using the GIAO method at mPW1PW91/6-31G(d,p) in chloroform. Through DP4+, the isomer of configuration (1S,2S,3R,6R) for 1 was predicted with 96.3% probability. Compounds 1 and 2 significantly inhibited the four target enzymes in vitro. Binding studies through molecular docking simulations showed strong binding affinities for (-)-zeylenone (2), thus validating the in vitro results. Our findings suggest the potential of polyoxygenated cyclohexenes, in particular (-)-zeylenone (2), in anti-diabetic and anti-obesity drug discovery.
Publikation

Predarska, I.; Saoud, M.; Drača, D.; Morgan, I.; Komazec, T.; Eichhorn, T.; Mihajlović, E.; Dunđerović, D.; Mijatović, S.; Maksimović-Ivanić, D.; Hey-Hawkins, E.; Kaluđerović, G. N.; Mesoporous silica nanoparticles enhance the anticancer efficacy of platinum(IV)-phenolate conjugates in breast cancer cell lines Nanomaterials 12, 3767, (2022) DOI: 10.3390/nano12213767

The main reasons for the limited clinical efficacy of the platinum(II)-based agent cisplatin include drug resistance and significant side effects. Due to their better stability, as well as the possibility to introduce biologically active ligands in their axial positions constructing multifunctional prodrugs, creating platinum(IV) complexes is a tempting strategy for addressing these limitations. Another strategy for developing chemotherapeutics with lower toxicity relies on the ability of nanoparticles to accumulate in greater quantities in tumor tissues through passive targeting. To combine the two approaches, three platinum(IV) conjugates based on a cisplatin scaffold containing in the axial positions derivatives of caffeic and ferulic acid were prepared and loaded into SBA-15 to produce the corresponding mesoporous silica nanoparticles (MSNs). The free platinum(IV) conjugates demonstrated higher or comparable activity with respect to cisplatin against different human breast cancer cell lines, while upon immobilization, superior antiproliferative activity with markedly increased cytotoxicity (more than 1000-fold lower IC50 values) compared to cisplatin was observed. Mechanistic investigations with the most potent conjugate, cisplatin-diacetyl caffeate (1), and the corresponding MSNs (SBA-15|1) in a 4T1 mouse breast cancer cell line showed that these compounds induce apoptotic cell death causing strong caspase activation. In vivo, in BALB/c mice, 1 and SBA-15|1 inhibited the tumor growth while decreasing the necrotic area and lowering the mitotic rate.
IPB Mainnav Search