zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 11 bis 20 von 64.

Publikation

Fellenberg, C.; Corea, O.; Yan, L.; Archinuk, F.; Piirtola, E.; Gordon, H.; Reichelt, M.; Brandt, W.; Wulff, J.; Ehlting, J.; Constabel, C. P.; Discovery of salicyl benzoate UDP‐glycosyltransferase, a central enzyme in poplar salicinoid phenolic glycoside biosynthesis Plant J. 102, 99-115, (2020) DOI: 10.1111/tpj.14615

The salicinoids are anti‐herbivore phenolic glycosides unique to the Salicaceae (Populus and Salix). They consist of a salicyl alcohol glucoside core, which is usually further acylated with benzoic, cinnamic, or phenolic acids. While salicinoid structures are well known, their biosynthesis remains enigmatic. Recently, two enzymes from poplar, salicyl alcohol benzoyl transferase and benzyl alcohol benzoyl transferase, were shown to catalyze the production of salicyl benzoate, a predicted potential intermediate in salicinoid biosynthesis. Here, we used transcriptomics and co‐expression analysis with these two genes to identify two UDP‐glucose dependent glycosyltransferases (UGT71L1 and UGT78M1) as candidate enzymes in this pathway. Both recombinant enzymes accepted only salicyl benzoate, salicyl aldehyde, and 2‐hydroxycinnamic acid as glucose acceptors. Knocking out the UGT71L1 gene by CRISPR/Cas9 in poplar hairy root cultures led to the complete loss of salicortin, tremulacin, and tremuloidin, and a partial reduction of salicin content. This demonstrated that UGT71L1 is required for synthesis of the major salicinoids, and suggested that an additional route can lead to salicin. CRISPR/Cas9 knockouts for UGT78M1 were not successful, and its in vivo role thus remains to be determined. Although it has a similar substrate preference and predicted structure as UGT71L1, it appears not to contribute to the synthesis of salicortin, tremulacin, and tremuloidin, at least in roots. The demonstration of UGT71L1 as an enzyme of salicinoid biosynthesis will open up new avenues for the elucidation of this pathway.
Publikation

Farag, M. A.; Abdelwareth, A.; Sallam, I. E.; el Shorbagi, M.; Jehmlich, N.; Fritz-Wallace, K.; Serena Schäpe, S.; Rolle-Kampczyk, U.; Ehrlich, A.; Wessjohann, L. A.; von Bergen, M.; Metabolomics reveals impact of seven functional foods on metabolic pathways in a gut microbiota model J. Adv. Res. 23, 47-59, (2020) DOI: 10.1016/j.jare.2020.01.001

Functional food defined as dietary supplements that in addition to their nutritional values, can beneficially modulate body functions becomes more and more popular but the reaction of the intestinal microbiota to it is largely unknown. In order to analyse the impact of functional food on the microbiota itself it is necessary to focus on the physiology of the microbiota, which can be assessed in a whole by untargeted metabolomics. Obtaining a detailed description of the gut microbiota reaction to food ingredients can be a key to understand how these organisms regulate and bioprocess many of these food components. Extracts prepared from seven chief functional foods, namely green tea, black tea, Opuntia ficus-indica (prickly pear, cactus pear), black coffee, green coffee, pomegranate, and sumac were administered to a gut consortium culture encompassing 8 microbes which are resembling, to a large extent, the metabolic activities found in the human gut. Samples were harvested at 0.5 and 24 h post addition of functional food extract and from blank culture in parallel and analysed for its metabolites composition using gas chromatography coupled to mass spectrometry detection (GC-MS). A total of 131 metabolites were identified belonging to organic acids, alcohols, amino acids, fatty acids, inorganic compounds, nitrogenous compounds, nucleic acids, phenolics, steroids and sugars, with amino acids as the most abundant class in cultures. Considering the complexity of such datasets, multivariate data analyses were employed to classify samples and investigate how functional foods influence gut microbiota metabolisms. Results from this study provided a first insights regarding how functional foods alter gut metabolism through either induction or inhibition of certain metabolic pathways, i.e. GABA production in the presence of higher acidity induced by functional food metabolites such as polyphenols. Likewise, functional food metabolites i.e., purine alkaloids acted themselves as direct substrate in microbiota metabolism.
Publikation

El Amerany, F.; Meddich, A.; Wahbi, S.; Porzel, A.; Taourirte, M.; Rhazi, M.; Hause, B.; Foliar Application of Chitosan Increases Tomato Growth and Influences Mycorrhization and Expression of Endochitinase-Encoding Genes Int. J. Mol. Sci. 21, 535, (2020) DOI: 10.3390/ijms21020535

Nowadays, applying bio-organic fertilizer (e.g., chitosan, Ch) or integrating beneficial microorganisms (e.g., arbuscular mycorrhizal fungi, AMF) are among the successful strategies to promote plant growth. Here, the effect of two application modes of Ch (foliar spray or root treatment) and Ch-derived nanoparticles (NPs) on tomato plants colonized with the AMF Rhizophagus irregularis were analyzed, thereby focusing on plant biomass, flowering and mycorrhization. An increase of shoot biomass and flower number was observed in arbuscular mycorrhizal (AM) plants sprayed with Ch. The interaction with AMF, however, was reduced as shown by decreased mycorrhization rates and AM-specific gene expression. To get insights into Ch effect on mycorrhization, levels of sugars, jasmonates, abscisic acid, and the expression of two chitinase-encoding genes were determined in mycorrhizal roots. Ch had no effect on sugar and phytohormone levels, but the reduced mycorrhization was correlated with down- and upregulated expression of Chi3 and Chi9, respectively. In contrast, application of NPs to leaves and Ch applied to the soil did not show any effect, neither on mycorrhization rate nor on growth of mycorrhizal plants. Concluding, Ch application to leaves enhanced plant growth and flowering and reduced interaction with AMF, whereas root treatment did not affect these parameters.
Publikation

de Moura, P. H. B.; de Sousa, A. A.; Porzel, A.; Wessjohann, L. A.; Leal, I. C. R.; Martins, R. C. C.; Characterization of antibacterial proanthocyanidins of Dalbergia monetaria, an amazonian medicinal plant, by UHPLC-HRMS/MS Planta Med. 86, 858– 866, (2020) DOI: 10.1055/a-1170-8016

Dalbergia monetaria is an Amazonian plant whose bark is widely used to treat urinary tract infections. This paper describes a bio-guided study of ethanolic extracts from the bark and leaves of D. monetaria, in a search for metabolites active against human pathogenic bacteria. In vitro assays were performed against 10 bacterial strains, highlighting methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Fractioning of the extracts was performed using instrumental and classical techniques, and samples were characterized by UHPLC-HRMS/MS. Ethyl acetate fractions from bark and leaves showed similar antibacterial activities. EAFB is enriched in isoflavone C-glucosides and EAFL enriched in proanthocyanidins. Subfractions from EAFL presented higher activity and showed a complex profile of proanthocyanidins constructed by (epi)-cassiaflavan and (epi)-catechin units, including dimers, trimers and tetramers. The fragmentation pattern emphasized the neutral loss of cassiaflavan units by quinone-methide fission. Fraction SL7-6, constituted by (ent)-cassiaflavan-(ent)-cassiaflavan-(epi)-catechin isomers, showed the lowest MIC against the S. aureus and P. aeruginosa with values corresponding to 64 and 32 µg/mL, respectively. Cassiaflavan-proanthocyanidins have not been found previously in another botanical genus, except in Cassia, and the traditional medicinal use of D. monetaria might be related to the antibacterial activity of proanthocyanidins characterized in the species.
Publikation

da Silva, I. C. V.; Silva, I. C. V. d.; de Oliveira, P. F.; Oliveira, P. F. d.; Barbosa, G. M.; Wessjohann, L. A.; Cardozo-Filho, L.; Holandino, C.; Muzitano, M. F.; Leal, I. C. R.; Passiflora mucronata leaves extracts obtained from different methodologies: a phytochemical study based on cytotoxic and apoptosis activities of triterpenes and phytosterols constituents Braz. J. Pharm. Sci. 56, e17666, (2020) DOI: 10.1590/s2175-97902019000417666

Cancer is one of the most prevalent diseases worldwide and the natural products could be a source of bioactive compounds. Passiflora mucronata (PM) belongs to a very known vegetal genus, although, there are no studies about cytotoxic activity or isolated compounds. Different extracts from PM were obtained by liquid-liquid partition (P), Soxhlet (Sox) and supercritical fluid (SFE1-5) extraction techniques, being compared concerning their yields, chemical profile and cytotoxicity. The Sox extracts showed the highest yields (6.03%: hexane; 2.51%: dichloromethane) followed by SFE (from 4.34 to 1.63%) and partitions (1.06 and 2.26%). The hexane partition (HP) showed the best cytotoxic activity against K562 cell line (IC50 = 18.72 µg.mL-1). From HP, the following compounds were identified and analysed its cytotoxic activities: β-amyrin (IC50 = 3.92 µg.mL-1), β-sitosterol (IC50 = 3.37 µg.mL-1), stigmasterol (IC50 = 3.31 µg.mL-1) and oleanolic acid. Stigmasterol induced about 75% of K562 total apoptosis. The compounds were tested against MA-104 cell line and the selective index (SI) attributed (SI >10 for all compounds). This indicates good selectivity to K562 cell line at the expense of MA-104. This is the first time, identifying those compounds to PM .
Publikation

Chuankid, B.; Schrey, H.; Thongbai, B.; Raspé, O.; Arnold, N.; Hyde, K. D.; Stadler, M.; Secondary metabolites of Phlebopus species from Northern Thailand Mycol. Prog. 19, 1525-1536, (2020) DOI: 10.1007/s11557-020-01643-y

AbstractSubmerged cultures of the edible mushrooms Phlebopus portentosus and Phlebopus spongiosus were screened for their secondary metabolites by HPLC-UV/Vis and HR-LC-ESI-MS. Two new compounds, 9′-hydroxyphenyl pulvinone (1), containing an unusual pulvinone structure, and phlebopyron (2), together with the seven known pigments, atromentic acid (3), xerocomic acid (4), variegatic acid (5), methyl atromentate (6), methyl isoxerocomate (7), methyl variegatate (8), and variegatorubin (9) were isolated from the cultures. Their structures were assigned on the basis of extensive 1D/2D NMR spectroscopic analyses, as well as HR-ESI-MS, and HR-ESI-MS/MS measurements. Furthermore, the isolated compounds were evaluated for their antimicrobial and cytotoxic properties. 9′-hydroxyphenyl pulvinone (1), xerocomic acid (4), and methyl variegatate (8) exhibited weak to moderate cytotoxic activities against several tumor cell lines. The present paper provides a comprehensive characterization of pigments from the class of pulvinic acids that are present in the basidiomes of many edible bolete species.
Publikation

Chalo, D. M.; Kakudidi, E.; Origa-Oryem, H.; Namukobe, J.; Franke, K.; Yenesew, A.; Wessjohann, L. A.; Chemical constituents of the roots of Ormocarpum sennoides subsp. zanzibaricum Biochem. Syst. Ecol. 93, 104142, (2020) DOI: 10.1016/j.bse.2020.104142

Phytochemical investigation of the roots of O. sennoides subsp. zanzibaricum Brenan & J.B. Gillett resulted in the isolation of three biflavonoids (trime-chamaejasmin, (+)- chamaejasmin, (+)-liquiritigeninyl-(I-3,II-3)-naringenin), one bi-4-phenyldihydrocoumarin (diphysin), one isoflavan (glabridin), one triterpenoid (3-O-acetyloleanoic acid) and a phytosterol (β-sitosterol). Compounds were identified by detailed MS, 1D and 2D NMR spectroscopic analyses. Their absolute configurations were elucidated based on ECD spectra. The previously undescribed trime-chamaejasmin represents a bis-epi-chamaejasmenin C diastereomer. The chemophenetic significance is discussed in detail. The results contribute to the phytochemical characterization of the genus Ormocarpum and suggest a close chemophenetic relationship with other genera within the subfamily Papilionoideae. Furthermore, this report provides baseline data for comparing the two infraspecific taxa of O. sennoides (Willd.) DC.
Publikation

Böhme, B.; Moritz, B.; Wendler, J.; Hertel, T. C.; Ihling, C.; Brandt, W.; Pietzsch, M.; Enzymatic activity and thermoresistance of improved microbial transglutaminase variants Amino Acids 52, 313-326, (2020) DOI: 10.1007/s00726-019-02764-9

Microbial transglutaminase (MTG, EC 2.3.2.13) of Streptomyces mobaraensis is widely used in industry for its ability to synthesize isopeptide bonds between the proteinogenic side chains of glutamine and lysine. The activated wild-type enzyme irreversibly denatures at 60 °C with a pseudo-first-order kinetics and a half-life time (t1/2) of 2 min. To increase the thermoresistance of MTG for higher temperature applications, we generated 31 variants based on previous results obtained by random mutagenesis, DNA shuffling and saturation mutagenesis. The best variant TG16 with a specific combination of five of seven substitutions (S2P, S23Y, S24 N, H289Y, K294L) shows a 19-fold increased half-life at 60 °C (t1/2 = 38 min). As measured by differential scanning fluorimetry, the transition point of thermal unfolding was increased by 7.9 °C. Also for the thermoresistant variants, it was shown that inactivation process follows a pseudo-first-order reaction which is accompanied by irreversible aggregation and intramolecular self-crosslinking of the enzyme. Although the mutations are mostly located on the surface of the enzyme, kinetic constants determined with the standard substrate CBZ-Gln-Gly-OH revealed a decrease in KM from 8.6 mM (± 0.1) to 3.5 mM (± 0.1) for the recombinant wild-type MTG and TG16, respectively. The improved performance of TG16 at higher temperatures is exemplary demonstrated with the crosslinking of the substrate protein β-casein at 60 °C. Using molecular dynamics simulations, it was shown that the increased thermoresistance is caused by a higher backbone rigidity as well as increased hydrophobic interactions and newly formed hydrogen bridges.
Publikation

Bascuñana, P.; Möhle, L.; Brackhan, M.; Pahnke, J.; Fingolimod as a Treatment in Neurologic Disorders Beyond Multiple Sclerosis Drugs R. D. 20, 197-207, (2020) DOI: 10.1007/s40268-020-00316-1

Fingolimod is an approved treatment for relapsing–remitting multiple sclerosis (MS), and its properties in different pathways have raised interest in therapy research for other neurodegenerative diseases. Fingolimod is an agonist of sphingosine-1-phosphate (S1P) receptors. Its main pharmacologic effect is immunomodulation by lymphocyte homing, thereby reducing the numbers of T and B cells in circulation. Because of the ubiquitous expression of S1P receptors, other effects have also been described. Here, we review preclinical experiments evaluating the effects of treatment with fingolimod in neurodegenerative diseases other than MS, such as Alzheimer’s disease or epilepsy. Fingolimod has shown neuroprotective effects in different animal models of neurodegenerative diseases, summarized here, correlating with increased brain-derived neurotrophic factor and improved disease phenotype (cognition and/or motor abilities). As expected, treatment also induced reductions in different neuroinflammatory markers because of not only inhibition of lymphocytes but also direct effects on astrocytes and microglia. Furthermore, fingolimod treatment exhibited additional effects for specific neurodegenerative disorders, such as reduction of amyloid-β production, and antiepileptogenic properties. The neuroprotective effects exerted by fingolimod in these preclinical studies are reviewed and support the translation of fingolimod into clinical trials as treatment in neurodegenerative diseases beyond neuroinflammatory conditions (MS).
Publikation

Abbas, G.; Haq, Q. M. I.; Hamaed, A.; Al-Sibani, M.; Hussain, H.; Glucagon and Glucagon-like Peptide-1 Receptors: Promising Therapeutic Targets for an Effective Management of Diabetes Mellitus Curr. Pharm. Des. 26, 501-508, (2020) DOI: 10.2174/1381612826666200131143231

G-protein-coupled receptors (GPCRs) are membrane-bound proteins which are responsible for the detection of extracellular stimuli and the origination of intracellular responses. Both glucagon and glucagon-like peptide-1 (GLP-1) receptors belong to G protein-coupled receptor (GPCR) superfamily. Along with insulin, glucagon and GLP-1 are critical hormones for maintaining normal serum glucose within human body. Glucagon generally plays its role in the liver through cyclic adenosine monophosphate (cAMP), where it compensates the action of insulin. GLP-1 is secreted by the L-cells of the small intestine to stimulate insulin secretion and inhibit glucagon action. Despite the extensive research efforts and the multiple approaches adopted, the glycemic control in the case of type-2 diabetes mellitus remains a major challenge. Therefore, a deep understanding of the structure-function relationship of these receptors will have great implications on future therapies in order to maintain a normal glucose level for an extended period of time. The antagonists of glucagon receptor that can effectively block the hepatic glucose production, as a result of glucagon action, are highly desirable for the tuning of the hyperglycemic state in type 2 diabetes mellitus. In the same manner, GLP-1R agonists act as important treatment modalities thanks to their multiple anti-diabetic actions to attain normal glucose level. In this review article, the structural diversity of glucagon and GLP-1 receptors along with their signaling pathways, site-directed mutations and significance in drug discovery against type-2 diabetes will be illustrated. Moreover, the promising non-peptide antagonists of glucagon receptor and agonists of GLP-1 receptor, for the management of diabetes will be presented with elaboration on the structure-activity relationship (SAR).
IPB Mainnav Search