zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 21 bis 30 von 48.

Publikation

Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O. A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; Frolov, A.; Wessjohann, L. A.; Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization Int. J. Mol. Sci. 19, 4089, (2018) DOI: 10.3390/ijms19124089

Drought is one of the major stress factors affecting the growth and development of plants. In this context, drought-related losses of crop plant productivity impede sustainable agriculture all over the world. In general, plants respond to water deficits by multiple physiological and metabolic adaptations at the molecular, cellular, and organism levels. To understand the underlying mechanisms of drought tolerance, adequate stress models and arrays of reliable stress markers are required. Therefore, in this review we comprehensively address currently available models of drought stress, based on culturing plants in soil, hydroponically, or in agar culture, and critically discuss advantages and limitations of each design. We also address the methodology of drought stress characterization and discuss it in the context of real experimental approaches. Further, we highlight the trends of methodological developments in drought stress research, i.e., complementing conventional tests with quantification of phytohormones and reactive oxygen species (ROS), measuring antioxidant enzyme activities, and comprehensively profiling transcriptome, proteome, and metabolome.
Publikation

Mot, A. C.; Prell, E.; Klecker, M.; Naumann, C.; Faden, F.; Westermann, B.; Dissmeyer, N.; Real-time detection of N-end rule-mediated ubiquitination via fluorescently labeled substrate probes New Phytol. 217, 613-624, (2018) DOI: 10.1111/nph.14497

The N‐end rule pathway has emerged as a major system for regulating protein functions by controlling their turnover in medical, animal and plant sciences as well as agriculture. Although novel functions and enzymes of the pathway have been discovered, the ubiquitination mechanism and substrate specificity of N‐end rule pathway E3 ubiquitin ligases have remained elusive. Taking the first discovered bona fide plant N‐end rule E3 ligase PROTEOLYSIS1 (PRT1) as a model, we used a novel tool to molecularly characterize polyubiquitination live, in real time.We gained mechanistic insights into PRT1 substrate preference and activation by monitoring live ubiquitination using a fluorescent chemical probe coupled to artificial substrate reporters. Ubiquitination was measured by rapid in‐gel fluorescence scanning as well as in real time by fluorescence polarization.The enzymatic activity, substrate specificity, mechanisms and reaction optimization of PRT1‐mediated ubiquitination were investigated ad hoc instantaneously and with significantly reduced reagent consumption.We demonstrated that PRT1 is indeed an E3 ligase, which has been hypothesized for over two decades. These results demonstrate that PRT1 has the potential to be involved in polyubiquitination of various substrates and therefore pave the way to understanding recently discovered phenotypes of prt1 mutants.
Publikation

Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.; IR and NMR spectroscopic correlation of enterobactin by DFT Spectrochim. Acta A 198, 264-277, (2018) DOI: 10.1016/j.saa.2018.02.060

Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097–6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections LC-PBE and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the OH and NH bands, while the CO amide and O(CO) IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.
Publikation

Mijatović, S.; Bramanti, A.; Nicoletti, F.; Fagone, P.; Kaluđerović, G. N.; Maksimović-Ivanić, D.; Naturally occurring compounds in differentiation based therapy of cancer Biotechnol. Adv. 36, 1622-1632, (2018) DOI: 10.1016/j.biotechadv.2018.04.001

Differentiation of cancer cells entails the reversion of phenotype from malignant to the original. The conversion to cell type characteristic for another tissue is named transdifferentiation. Differentiation/transdifferentiation of malignant cells in high grade tumor mass could serve as a nonaggressive approach that potentially limits tumor progression and augments chemosensitivity. While this therapeutic strategy is already being used for treatment of hematological cancers, its feasibility for solid malignancies is still debated. We will presently discuss the natural compounds that show these properties, with focus on anthraquinones from Aloe vera, Senna, Rheum sp. and hop derived prenylflavonoids.
Publikation

Michels, B.; Zwaka, H.; Bartels, R.; Lushchak, O.; Franke, K.; Endres, T.; Fendt, M.; Song, I.; Bakr, M.; Budragchaa, T.; Westermann, B.; Mishra, D.; Eschbach, C.; Schreyer, S.; Lingnau, A.; Vahl, C.; Hilker, M.; Menzel, R.; Kähne, T.; Leßmann, V.; Dityatev, A.; Wessjohann, L.; Gerber, B.; Memory enhancement by ferulic acid ester across species Sci. Adv. 4, eaat6994, (2018) DOI: 10.1126/sciadv.aat6994

Cognitive impairments can be devastating for quality of life, and thus, preventing or counteracting them is of great value. To this end, the present study exploits the potential of the plant Rhodiola rosea and identifies the constituent ferulic acid eicosyl ester [icosyl-(2E)-3-(4-hydroxy-3-methoxyphenyl)-prop-2-enoate (FAE-20)] as a memory enhancer. We show that food supplementation with dried root material from R. rosea dose-dependently improves odor-taste reward associative memory scores in larval Drosophila and prevents the age-related decline of this appetitive memory in adult flies. Task-relevant sensorimotor faculties remain unaltered. From a parallel approach, a list of candidate compounds has been derived, including R. rosea–derived FAE-20. Here, we show that both R. rosea–derived FAE-20 and synthetic FAE-20 are effective as memory enhancers in larval Drosophila. Synthetic FAE-20 also partially compensates for age-related memory decline in adult flies, as well as genetically induced early-onset loss of memory function in young flies. Furthermore, it increases excitability in mouse hippocampal CA1 neurons, leads to more stable context-shock aversive associative memory in young adult (3-month-old) mice, and increases memory scores in old (>2-year-old) mice. Given these effects, and given the utility of R. rosea—the plant from which we discovered FAE-20—as a memory enhancer, these results may hold potential for clinical applications.
Publikation

Méndez, Y.; Chang, J.; Humpierre, A. R.; Zanuy, A.; Garrido, R.; Vasco, A. V.; Pedroso, J.; Santana, D.; Rodríguez, L. M.; García-Rivera, D.; Valdés, Y.; Vérez-Bencomo, V.; Rivera, D. G.; Multicomponent polysaccharide–protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates Chem. Sci. 9, 2581-2588, (2018) DOI: 10.1039/C7SC05467J

A new synthetic strategy for the development of multivalent antibacterial glycoconjugate vaccines is described. The approach comprises the utilization of an isocyanide-based multicomponent process for the conjugation of functionalized capsular polysaccharides of S. pneumoniae and S. Typhi to carrier proteins such as diphtheria and tetanus toxoids. For the first time, oxo- and carboxylic acid-functionalized polysaccharides could be either independently or simultaneously conjugated to immunogenic proteins by means of the Ugi-multicomponent reaction, thus leading to mono- or multivalent unimolecular glycoconjugates as vaccine candidates. Despite the high molecular weight of the two or three reacting biomolecules, the multicomponent bioconjugation proved highly efficient and reproducible. The Ugi-derived glycoconjugates showed notable antigenicity and elicited good titers of functional specific antibodies. To our knowledge, this is the only bioconjugation method that enables the incorporation of two different polysaccharidic antigens to a carrier protein in a single step. Applications in the field of self-adjuvanting, eventually anticancer, multicomponent vaccines are foreseeable.
Publikation

Matamoros, M. A.; Kim, A.; Peñuelas, M.; Ihling, C.; Griesser, E.; Hoffmann, R.; Fedorova, M.; Frolov, A.; Becana, M.; Protein Carbonylation and Glycation in Legume Nodules Plant Physiol. 177, 1510-1528, (2018) DOI: 10.1104/pp.18.00533

Nitrogen fixation is an agronomically and environmentally important process catalyzed by bacterial nitrogenase within legume root nodules. These unique symbiotic organs have high metabolic rates and produce large amounts of reactive oxygen species that may modify proteins irreversibly. Here, we examined two types of oxidative posttranslational modifications of nodule proteins: carbonylation, which occurs by direct oxidation of certain amino acids or by interaction with reactive aldehydes arising from cell membrane lipid peroxides; and glycation, which results from the reaction of Lys and Arg residues with reducing sugars or their auto-oxidation products. We used a strategy based on the enrichment of carbonylated peptides by affinity chromatography followed by liquid chromatography-tandem mass spectrometry to identify 369 oxidized proteins in bean (Phaseolus vulgaris) nodules. Of these, 238 corresponded to plant proteins and 131 to bacterial proteins. Lipid peroxidation products induced most carbonylation sites. This study also revealed that carbonylation has major effects on two key nodule proteins. Metal-catalyzed oxidation caused inactivation of malate dehydrogenase and aggregation of leghemoglobin. In addition, numerous glycated proteins were identified in vivo, including three key nodule proteins: sucrose synthase, glutamine synthetase, and glutamate synthase. Label-free quantification identified 10 plant proteins and 18 bacterial proteins as age-specifically glycated. Overall, our results suggest that the selective carbonylation or glycation of crucial proteins involved in nitrogen metabolism, transcriptional regulation, and signaling may constitute a mechanism to control cell metabolism and nodule senescence.
Publikation

Mamontova, T.; Lukasheva, E.; Mavropolo-Stolyarenko, G.; Proksch, C.; Bilova, T.; Kim, A.; Babakov, V.; Grishina, T.; Hoehenwarter, W.; Medvedev, S.; Smolikova, G.; Frolov, A.; Proteome Map of Pea (Pisum sativum L.) Embryos Containing Different Amounts of Residual Chlorophylls Int. J. Mol. Sci. 19, 4066, (2018) DOI: 10.3390/ijms19124066

Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.
Publikation

Mairinger, S.; Zoufal, V.; Wanek, T.; Traxl, A.; Filip, T.; Sauberer, M.; Stanek, J.; Kuntner, C.; Pahnke, J.; Müller, M.; Langer, O.; Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice Eur. J. Pharm. Sci. 115, 212-222, (2018) DOI: 10.1016/j.ejps.2018.01.034

Ko143 is a reference inhibitor of the adenosine triphosphate-binding cassette (ABC) transporter breast cancer resistance protein (humans: ABCG2, rodents: Abcg2) for in vitro and in vivo use. Previous in vitro data indicate that Ko143 binds specifically to ABCG2/Abcg2, suggesting a potential utility of Ko143 as a positron emission tomography (PET) tracer to assess the density (abundance) of ABCG2 in different tissues. In this work we radiolabeled Ko143 with carbon-11 (11C) and performed small-animal PET experiments with [11C]Ko143 in wild-type, Abcg2(−/−), Abcb1a/b(−/−) and Abcb1a/b(−/−)Abcg2(−/−) mice to assess the influence of Abcg2 and Abcb1a/b on tissue distribution and excretion of [11C]Ko143.[11C]Ko143 was extensively metabolized in vivo and unidentified radiolabeled metabolites were found in all investigated tissues. We detected no significant differences between wild-type and Abcg2(−/−) mice in the distribution of [11C]Ko143-derived radioactivity to Abcg2-expressing organs (brain, liver and kidney). [11C]Ko143 and possibly its radiolabeled metabolites were transported by Abcb1a and not by Abcg2 at the mouse blood-brain barrier. [11C]Ko143-derived radioactivity underwent both hepatobiliary and urinary excretion, with Abcg2 playing a possible role in mediating the transport of radiolabeled metabolites of [11C]Ko143 from the kidney into urine. Experiments in which a pharmacologic dose of unlabeled Ko143 (10 mg/kg) was co-administered with [11C]Ko143 revealed pronounced effects of the vehicle used for Ko143 formulation (containing polyethylene glycol 300 and polysorbate 80) on radioactivity distribution to the brain and the liver, as well as on hepatobiliary and urinary excretion of radioactivity.Our results highlight the challenges associated with the development of PET tracers for ABC transporters and emphasize that inhibitory effects of pharmaceutical excipients on membrane transporters need to be considered when performing in vivo drug-drug interaction studies. Finally, our study illustrates the power of small-animal PET to assess the interaction of drug molecules with membrane transporters on a whole body level.
Publikation

Lohmann, J. S.; von Nussbaum, M.; Brandt, W.; Mülbradt, J.; Steglich, W.; Spiteller, P.; Rosellin A and B, two red diketopiperazine alkaloids from the mushroom Mycena rosella Tetrahedron 74, 5113-5118, (2018) DOI: 10.1016/j.tet.2018.06.049

Rosellin A and B, two red diketopiperazine alkaloids with unprecedented structures, have been isolated from the fruiting bodies of the mushroom Mycena rosella. The structures of the rosellins were mainly deduced from their 2D NMR and HRMS (ESI) spectra. Their absolute configuration was determined by comparison of the CD spectra of the rosellins with the corresponding CD spectra obtained by quantum chemical calculations. Root exposure to rosellin A led to bleaching of the leaves of Lepidium sativum plants.
IPB Mainnav Search