zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 13.

Publikation

Ziegler, J.; Facchini, P. J.; Geißler, R.; Schmidt, J.; Ammer, C.; Kramell, R.; Voigtländer, S.; Gesell, A.; Pienkny, S.; Brandt, W.; Evolution of morphine biosynthesis in opium poppy Phytochemistry 70, 1696-1707, (2009) DOI: 10.1016/j.phytochem.2009.07.006

Benzylisoquinoline alkaloids (BIAs) are a group of nitrogen-containing plant secondary metabolites comprised of an estimated 2500 identified structures. In BIA metabolism, (S)-reticuline is a key branch-point intermediate that can be directed into several alkaloid subtypes with different structural skeleton configurations. The morphinan alkaloids are one subclass of BIAs produced in only a few plant species, most notably and abundantly in the opium poppy (Papaver somniferum). Comparative transcriptome analysis of opium poppy and several other Papaver species that do not accumulate morphinan alkaloids showed that known genes encoding BIA biosynthetic enzymes are expressed at higher levels in P. somniferum. Three unknown cDNAs that are co-ordinately expressed with several BIA biosynthetic genes were identified as enzymes in the pathway. One of these enzymes, salutaridine reductase (SalR), which is specific for the production of morphinan alkaloids, was isolated and heterologously overexpressed in its active form not only from P. somniferum, but also from Papaver species that do not produce morphinan alkaloids. SalR is a member of a class of short chain dehydrogenase/reductases (SDRs) that are active as monomers and possess an extended amino acid sequence compared with classical SDRs. Homology modelling and substrate docking revealed the substrate binding site for SalR. The amino acids residues conferring salutaridine binding were compared to several members of the SDR family from different plant species, which non-specifically reduce (−)-menthone to (+)-neomenthol. Previously, it was shown that some of these proteins are involved in plant defence. The recruitment of specific monomeric SDRs from monomeric SDRs involved in plant defence is discussed.
Publikation

Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J.; Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L) Plant J. 60, 56-67, (2009) DOI: 10.1111/j.1365-313X.2009.03937.x

The benzylisoquinoline alkaloids are a highly diverse group of about 2500 compounds which accumulate in a species‐specific manner. Despite the numerous compounds which could be identified, the biosynthetic pathways and the participating enzymes or cDNAs could be characterized only for a few selected members, whereas the biosynthesis of the majority of the compounds is still largely unknown. In an attempt to characterize additional biosynthetic steps at the molecular level, integration of alkaloid and transcript profiling across Papaver species was performed. This analysis showed high expression of an expressed sequence tag (EST) of unknown function only in Papaver somniferum varieties. After full‐length cloning of the open reading frame and sequence analysis, this EST could be classified as a member of the class II type O ‐methyltransferase protein family. It was related to O ‐methyltransferases from benzylisoquinoline biosynthesis, and the amino acid sequence showed 68% identical residues to norcoclaurine 6‐O ‐methyltransferase. However, rather than methylating norcoclaurine, the recombinant protein methylated norreticuline at position seven with a K m of 44 μm using S ‐adenosyl‐l ‐methionine as a cofactor. Of all substrates tested, only norreticuline was converted. Even minor changes in the benzylisoquinoline backbone were not tolerated by the enzyme. Accordingly, the enzyme was named norreticuline 7–O ‐methyltransferase (N7OMT). This enzyme represents a novel O ‐methyltransferase in benzylisoquinoline metabolism. Expression analysis showed slightly increased expression of N7OMT in P. somniferum varieties containing papaverine, suggesting its involvement in the partially unknown biosynthesis of this pharmaceutically important compound.
Publikation

Fonseca, S.; Chini, A.; Hamberg, M.; Adie, B.; Porzel, A.; Kramell, R.; Miersch, O.; Wasternack, C.; Solano, R.; (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate Nat. Chem. Biol. 5, 344-350, (2009) DOI: 10.1038/nchembio.161

Hormone-triggered activation of the jasmonate signaling pathway in Arabidopsis thaliana requires SCFCOI1-mediated proteasome degradation of JAZ repressors. (−)-JA-L-Ile is the proposed bioactive hormone, and SCFCOI1 is its likely receptor. We found that the biological activity of (−)-JA-L-Ile is unexpectedly low compared to coronatine and the synthetic isomer (+)-JA-L-Ile, which suggests that the stereochemical orientation of the cyclopentanone-ring side chains greatly affects receptor binding. Detailed GC-MS and HPLC analyses showed that the (−)-JA-L-Ile preparations currently used in ligand binding studies contain small amounts of the C7 epimer (+)-7-iso-JA-L-Ile. Purification of each of these molecules demonstrated that pure (−)-JA-L-Ile is inactive and that the active hormone is (+)-7-iso-JA-L-Ile, which is also structurally more similar to coronatine. In addition, we show that pH changes promote conversion of (+)-7-iso-JA-L-Ile to the inactive (−)-JA-L-Ile form, thus providing a simple mechanism that can regulate hormone activity through epimerization.
Publikation

Ziegler, J.; Voigtländer, S.; Schmidt, J.; Kramell, R.; Miersch, O.; Ammer, C.; Gesell, A.; Kutchan, T. M.; Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis Plant J. 48, 177-192, (2006) DOI: 10.1111/j.1365-313X.2006.02860.x

Plants of the order Ranunculales, especially members of the species Papaver , accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum ) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum , 69 show increased expression in morphinan alkaloid‐containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7‐epi ‐salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo‐keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.
Publikation

Frick, S.; Kramell, R.; Schmidt, J.; Fist, A. J.; Kutchan, T. M.; Comparative Qualitative and Quantitative Determination of Alkaloids in Narcotic and Condiment Papaver somniferum Cultivars J. Nat. Prod. 68, 666-673, (2005) DOI: 10.1021/np0496643

In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared with the results from the low-morphine cultivar “Marianne”. In the elite cultivar, 91.2% of the latex alkaloids consist of the three pharmaceutically most valuable alkaloids: morphine, codeine, and thebaine. In the root system, the major alkaloids are sanguinarine/10-hydroxysanguinarine and dihydrosanguinarine/10-hydroxydihydrosanguinarine. In the stems and leaves of C048-6-14-64, the same alkaloids were measured as in the latex. In the stems, a gradient in relative total alkaloid content from the top downward toward the roots was observed. The concentration of morphine was decreasing toward the roots, whereas an increasing gradient from the upper to the lower stem parts was detected for codeine. The relative total alkaloid concentration in leaves remained constant; no gradient was observed. The cultivar “Marianne” displayed a shifted pattern of alkaloid accumulation and reduced levels of total alkaloid. In the condiment cultivar, 80.5% of the alkaloids of the latex consisted of the two phthalideisoquinoline alkaloids narcotoline and noscapine. Only 18.8% of the relative total alkaloid content were morphinan alkaloids. In contrast to the narcotic cultivar, in which the benzo[c]phenanthridines in roots dominated over the morphinan and tetrahydrobenzylisoquinoline alkaloids, the concentration of benzo[c]phenanthridines in “Marianne” was similar to that of morphinan and tetrahydrobenzylisoquinoline alkaloids. These data suggest a differential alkaloid regulation in each cultivar of P. somniferum.
Publikation

Kramell, R.; Schmidt, J.; Herrmann, G.; Schliemann, W.; N-(Jasmonoyl)tyrosine-Derived Compounds from Flowers of Broad Beans (Vicia faba) J. Nat. Prod. 68, 1345-1349, (2005) DOI: 10.1021/np0501482

Two new amide-linked conjugates of jasmonic acid, N-[(3R,7R)-(−)-jasmonoyl]-(S)-dopa (3) and N-[(3R,7R)-(−)-jasmonoyl]-dopamine (5), were isolated in addition to the known compound N-[(3R,7R)-(−)-jasmonoyl]-(S)-tyrosine (2) from the methanolic extract of flowers of broad bean (Vicia faba). Their structures were proposed on the basis of spectroscopic data (LC-MS/MS) and chromatographic properties on reversed and chiral phases and confirmed by partial syntheses. Furthermore, tyrosine conjugates of two cucurbic acid isomers (7, 8) were detected and characterized by LC-MS. Crude enzyme preparations from flowers of V. faba hydroxylated both (±)-2 and N-[(3R,7R/3S,7S)-(−)-jasmonoyl]tyramine [(±)-4] to (±)-3 and (±)-5, respectively, suggesting a possible biosynthetic relationship. In addition, a commercial tyrosinase (mushroom) and a tyrosinase-containing extract from hairy roots of red beet exhibited the same catalytic properties, but with different substrate specificities. The conjugates (±)-2, (±)-3, (±)-4, and (±)-5 exhibited in a bioassay low activity to elicit alkaloid formation in comparison to free (±)-jasmonic acid [(±)-1].
Publikation

Frick, S.; Chitty, J. A.; Kramell, R.; Schmidt, J.; Allen, R. S.; Larkin, P. J.; Kutchan, T. M.; Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots Transgenic Res. 13, 607-613, (2004) DOI: 10.1007/s11248-004-2892-6

The berberine bridge enzyme cDNA bbe from Papaver somniferumL. was transformed in antisense orientation into seedling explants of the industrial elite line C048-6-14-64. In this way, 84 phenotypically normal T0 plants derived from embryogenic callus cultures were produced. The selfed progeny of these 84 plants yielded several T1 plants with an altered alkaloid profile. One of these plants T1-47, and its siblings T2-1.2 and T2-1.5 are the subject of the present work. The transformation of these plants was evaluated by PCR, and northern and Southern hybridisation. The transgenic plants contained one additional copy of the transgene. The alkaloid content in latex and roots was determined with HPLC and LC-MS. We observed an increased concentration of several pathway intermediates from all biosynthetic branches, e.g., reticuline, laudanine, laudanosine, dehydroreticuline, salutaridine and (S)-scoulerine. The transformation altered the ratio of morphinan and tetrahydrobenzylisoquinoline alkaloids in latex but not the benzophenanthridine alkaloids in roots. The altered alkaloid profile is heritable at least to the T2 generation. These results are the first example of metabolic engineering of the alkaloid pathways in opium poppy and, to our knowledge, the first time that an alkaloid biosynthetic gene has been transformed into the native species, followed by regeneration into a mature plant to enable analyses of the effect of the transgene on metabolism over several generations.
Publikation

Kolbe, A.; Kramell, R.; Porzel, A.; Schmidt, J.; Schneider, G.; Adam, G.; Syntheses of Dexamethasone Conjugates of the Phytohormones Gibberellin A3 and 24-Epicastasterone Collect. Czech. Chem. Commun. 67, 103-114, (2002) DOI: 10.1135/cccc20020103

The syntheses of N-[10-(9α-fluoro-11β,17α-dihydroxy-16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamido)decyl]gibberellamide (7) and 6-[({N-[10-(9α-fluoro-11β,17α-dihydroxy- 16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamido)decyl]carbamoyl}methoxy)imino]-24-epicastasterone (10) are described. [(Benzotriazol-1-yl)oxy]bis(pyrrolidin-1-yl)methylium hexafluorophosphate (HBPyU) was used as the coupling agent for the reaction of gibberellic acid as well as of 24-epicastasterone-O-(carboxymethyl)oxime with N-(10-aminodecyl)- 9α-fluoro-11β,17α-dihydroxy-16α-methyl-3-oxoandrosta-1,4-diene-17β-carboxamide (4). The gibberellic acid conjugate 7 was also synthesised by the coupling of succinimidyl gibberellate 6 with amine 4.
Publikation

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Wasternack, C.; Chromatographic resolution of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers J. Chromatogr. A 847, 103-107, (1999) DOI: 10.1016/S0021-9673(99)00335-0

The chiral separation of peptide-like conjugates of jasmonic acid and of cucurbic acid isomers was investigated by liquid chromatography on Chiralpak AS and Nucleodex β-PM. The retention sequences reflect distinct chromatographic properties with respect to the chirality of the jasmonic acid part or of the cucurbic acid isomers. The chromatographic behaviour of the amide conjugates on a reversed-phase C18 column provides evidence for the resolution of diastereomeric conjugates depending on the chirality of both constituents of the conjugate molecule. The chromatographic procedures are suitable for the analytical and preparative separation of such conjugates.
Publikation

Kramell, R.; Porzel, A.; Miersch, O.; Schneider, G.; Analysis of synthetic isoleucine conjugates of cucurbic acid isomers by liquid chromatography Phytochem. Anal. 10, 82-87, (1999) DOI: 10.1002/(SICI)1099-1565(199903/04)10:2<82::AID-PCA448>3.0.CO;2-K

Conjugates of 3,7‐trans cucurbic acid isomers with either (S )‐ or (R )‐isoleucine were synthesised from the diastereomeric conjugate of (3R , 7R )‐jasmonic acid and (3S , 7S )‐jasmonic acid by sodium borohydride reduction. The resulting diastereomers were characterised by nuclear magnetic resonance spectra. The authentic substances were subjected to liquid chromatography using a reversed‐phase C18 matrix and the chiral stationary phase Chiralpak AS. For all (6RS )‐hydroxy epimeric pairs, a baseline separation could be observed. The elution sequences obtained indicate that the 3,6‐trans oriented epimers with (S )‐isoleucine elute prior to the 3,6‐cis configured individuals independent of the mode of chromatography. In contrast, the elution pattern of the conjugates containing (R )‐isoleucine was reversed on the chiral stationary phase. The epimers with a 3,6‐cis configured hydroxy group and the acid side chain eluted faster than those with the 3,6‐trans configuration. The chromatographic conditions described are suitable for resolving mixtures of isomeric N‐(cucurbinoyl)‐isoleucines in order to assign their stereochemistry and to obtain chiral reference materials on a preparative scale.
IPB Mainnav Search