zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Natur- und Wirkstoffchemie

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 9 von 9.

Bücher und Buchkapitel

Vasco, A. V.; Ricardo, M. G.; Rivera, D. G.; Wessjohann, L. A.; Ligation, Macrocyclization, and Simultaneous Functionalization of Peptides by Multicomponent Reactions (MCR) Methods Mol. Biol. 2371, 143-157, (2022) ISBN: 978-1-0716-1688-8 DOI: 10.1007/978-1-0716-1689-5_8

Multicomponent reactions (MCRs) are recently expanding the plethora of solid-phase protocols for the synthesis and derivatization of peptides. Herein, we describe a solid-phase-compatible strategy based on MCRs as a powerful strategy for peptide cyclization and ligation . We illustrate, using Gramicidin S as a model peptide, how the execution of on-resin Ugi reactions enables the simultaneous backbone N-functionalization and cyclization, which are important types of derivatizations in peptide-based drug development or for incorporation of conjugation handles, or labels.
Publikation

Ricardo, M. G.; Schwark, M.; Llanes, D.; Niedermeyer, T. H. J.; Westermann, B.; Total synthesis of Aetokthonotoxin, the cyanobacterial neurotoxin causing vacuolar myelinopathy Chem.-Eur. J. 27, 12032-12035, (2021) DOI: 10.1002/chem.202101848

Aetokthonotoxin has recently been identified as the cyanobacterial neurotoxin causing Vacuolar Myelinopathy, a fatal neurologic disease, spreading through a trophic cascade and affecting birds of prey such as the bald eagle in the USA. Here, we describe the total synthesis of this specialized metabolite. The complex, highly brominated 1,2’-biindole could be synthesized via a Somei-type Michael reaction as key step. The optimised sequence yielded the natural product in five steps with an overall yield of 29 %.
Publikation

Ricardo, M. G.; Moya, C. G.; Pérez, C. S.; Porzel, A.; Wessjohann, L. A.; Rivera, D. G.; Improved Stability and Tunable Functionalization of Parallel β‐Sheets via Multicomponent N‐Alkylation of the Turn Moiety Angew. Chem. 132, 265-269, (2020) DOI: 10.1002/ange.201912095

In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publikation

Ricardo, M. G.; Moya, C. G.; Pérez, C. S.; Porzel, A.; Wessjohann, L. A.; Rivera, D. G.; Improved Stability and Tunable Functionalization of Parallel β-Sheets via Multicomponent N-Alkylation of the Turn Moiety Angew. Chem. Int. Ed. 59, 259-263, (2020) DOI: 10.1002/anie.201912095

In contrast to the myriad of methods available to produce α‐helices and antiparallel β‐sheets in synthetic peptides, just a few are known for the construction of stable, non‐cyclic parallel β‐sheets. Herein, we report an efficient on‐resin approach for the assembly of parallel β‐sheet peptides in which the N‐alkylated turn moiety enhances the stability and gives access to a variety of functionalizations without modifying the parallel strands. The key synthetic step of this strategy is the multicomponent construction of an N‐alkylated turn using the Ugi reaction on varied isocyano‐resins. This four‐component process assembles the orthogonally protected turn fragment and incorporates handles serving for labeling/conjugation purposes or for reducing peptide aggregation. NMR and circular dichroism analyses confirm the better‐structured and more stable parallel β‐sheets in the N‐alkylated peptides compared to the non‐functionalized variants.
Publikation

Ricardo, M. G.; Vasco, A. V.; Rivera, D. G.; Wessjohann, L. A.; Stabilization of Cyclic β-Hairpins by Ugi-Reaction-Derived N-Alkylated Peptides: The Quest for Functionalized β-Turns Org. Lett. 21, 7307-7310, (2019) DOI: 10.1021/acs.orglett.9b02592

A solid-phase approach including on-resin Ugi reactions was developed for the construction of β-hairpins. Various N-alkylated dipeptide fragments proved capable of aligning antiparallel β-sheets in a macrocyclic scaffold, thus serving as β-hairpin templates. Gramicidin S was used as the model β-hairpin to compare the Ugi-derived β-turns with the type-II′ β-turn. The results show that the multicomponent incorporation of such N-alkylated residues allows for the simultaneous stabilization and exo-cyclic functionalization of cyclic β-hairpins.
Publikation

Ricardo, M. G.; Llanes, D.; Wessjohann, L. A.; Rivera, D. G.; Introducing the Petasis Reaction for Late-Stage Multicomponent Diversification, Labeling, and Stapling of Peptides Angew. Chem. Int. Ed. 58, 2700-2704, (2019) DOI: 10.1002/anie.201812620

For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publikation

Ricardo, M. G.; Llanes, D.; Wessjohann, L. A.; Rivera, D. G.; Introducing the Petasis Reaction for Late-Stage Multicomponent Diversification, Labeling, and Stapling of Peptides Angew. Chem. 131, 2726-2730, (2019) DOI: 10.1002/ange.201812620

For the first time, the Petasis (borono‐Mannich) reaction is employed for the multicomponent labeling and stapling of peptides. The report includes the solid‐phase derivatization of peptides at the N‐terminus, Lys, and Nϵ‐MeLys side‐chains by an on‐resin Petasis reaction with variation of the carbonyl and boronic acid components. Peptides were simultaneously functionalized with aryl/vinyl substituents bearing fluorescent/affinity tags and oxo components such as dihydroxyacetone, glyceraldehyde, glyoxylic acid, and aldoses, thus encompassing a powerful complexity‐generating approach without changing the charge of the peptides. The multicomponent stapling was conducted in solution by linking Nϵ‐MeLys or Orn side‐chains, positioned at i, i+7 and i, i+4, with aryl tethers, while hydroxy carbonyl moieties were introduced as exocyclic fragments. The good efficiency and diversity oriented character of these methods show prospects for peptide drug discovery and chemical biology.
Publikation

Ricardo, M. G.; Marrero, J. F.; Valdés, O.; Rivera, D. G.; Wessjohann, L. A.; A Peptide Backbone Stapling Strategy Enabled by the Multicomponent Incorporation of Amide N‐Substituents Chem.-Eur. J. 25, 769-774, (2019) DOI: 10.1002/chem.201805318

The multicomponent backbone N‐modification of peptides on solid‐phase is presented as a powerful and general method to enable peptide stapling at the backbone instead of the side chains. This work shows that a variety of functionalized N‐substituents suitable for backbone stapling can be readily introduced by means of on‐resin Ugi multicomponent reactions conducted during solid‐phase peptide synthesis. Diverse macrocyclization chemistries were implemented with such backbone N‐substituents, including the ring‐closing metathesis, lactamization, and thiol alkylation. The backbone N‐modification method was also applied to the synthesis of α‐helical peptides by linking N‐substituents to the peptide N‐terminus, thus featuring hydrogen‐bond surrogate structures. Overall, the strategy proves useful for peptide backbone macrocyclization approaches that show promise in peptide drug discovery.
Publikation

Ricardo, M. G.; Morales, F. E.; Garay, H.; Reyes, O.; Vasilev, D.; Wessjohann, L. A.; Rivera, D. G.; Bidirectional macrocyclization of peptides by double multicomponent reactions Org. Biomol. Chem. 13, 438-446, (2015) DOI: 10.1039/c4ob01915f

Increasing the diversity of peptide cyclization methods is an effective way of accessing new types of macrocyclic chemotypes featuring a wide variety of ring sizes and topologies. Multicomponent reactions (MCRs) are processes capable of generating great levels of molecular diversity and complexity at low synthetic cost. In an attempt to further exploit MCRs in the field of cyclopeptides, we describe a bidirectional multicomponent approach for the synthesis of N-alkylated macrocyclic peptides of varied sequences and cross-linking positions. The process relies on the execution of two Ugi reactions between peptide diacids and diisocyanides. Varying the amino component enabled the installation of exocyclic elements of diversity, while skeletal diversity was created through different side chain and backbone cyclizations. This procedure shows prospects for the rapid scanning of the chemical space of macrocyclic peptides for applications in chemical biology and drug discovery.
IPB Mainnav Search