zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 15.

Publikation

Frey, M.; Bathe, U.; Meink, L.; Balcke, G. U.; Schmidt, J.; Frolov, A.; Soboleva, A.; Hassanin, A.; Davari, M. D.; Frank, O.; Schlagbauer, V.; Dawid, C.; Tissier, A.; Combinatorial biosynthesis in yeast leads to over 200 diterpenoids Metab. Eng. 82, 193-200, (2024) DOI: 10.1016/j.ymben.2024.02.006

Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.
Publikation

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86, 1373-1384, (2023) DOI: 10.1021/acs.jnatprod.2c00716

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation

Soboleva, A.; Frolova, N.; Bureiko, K.; Shumilina, J.; Balcke, G. U.; Zhukov, V. A.; Tikhonovich, I. A.; Frolov, A.; Dynamics of Reactive Carbonyl Species in Pea Root Nodules in Response to Polyethylene Glycol (PEG)-Induced Osmotic Stress Int. J. Mol. Sci. 23, 2726, (2022) DOI: 10.3390/ijms23052726

Drought dramatically affects crop productivity worldwide. For legumes this effect is especially pronounced, as their symbiotic association with rhizobia is highly-sensitive to dehydration. This might be attributed to the oxidative stress, which ultimately accompanies plants’ response to water deficit. Indeed, enhanced formation of reactive oxygen species in root nodules might result in up-regulation of lipid peroxidation and overproduction of reactive carbonyl compounds (RCCs), which readily modify biomolecules and disrupt cell functions. Thus, the knowledge of the nodule carbonyl metabolome dynamics is critically important for understanding the drought-related losses of nitrogen fixation efficiency and plant productivity. Therefore, here we provide, to the best of our knowledge, for the first time a comprehensive overview of the pea root nodule carbonyl metabolome and address its alterations in response to polyethylene glycol-induced osmotic stress as the first step to examine the changes of RCC patterns in drought treated plants. RCCs were extracted from the nodules and derivatized with 7-(diethylamino)coumarin-3-carbohydrazide (CHH). The relative quantification of CHH-derivatives by liquid chromatography-high resolution mass spectrometry with a post-run correction for derivative stability revealed in total 194 features with intensities above 1 × 105 counts, 19 of which were down- and three were upregulated. The upregulation of glyceraldehyde could accompany non-enzymatic conversion of glyceraldehyde-3-phosphate to methylglyoxal. The accumulation of 4,5-dioxovaleric acid could be the reason for down-regulation of porphyrin metabolism, suppression of leghemoglobin synthesis, inhibition of nitrogenase and degradation of legume-rhizobial symbiosis in response to polyethylene glycol (PEG)-induced osmotic stress effect. This effect needs to be confirmed with soil-based drought models.
Publikation

Frolova, N.; Soboleva, A.; Nguyen, V. D.; Kim, A.; Ihling, C.; Eisenschmidt-Bönn, D.; Mamontova, T.; Herfurth, U. M.; Wessjohann, L. A.; Sinz, A.; Birkenmeyer, C.; Frolov, A.; Probing glycation potential of dietary sugars in human blood by anintegrated in vitro approach Food Chem. 347, 128951, (2021) DOI: 10.1016/j.foodchem.2020.128951

Glycation is referred to as the interaction of protein amino and guanidino groups with reducing sugars and carbonyl products of their degradation. Resulting advanced glycation end-products (AGEs) contribute to pathogenesis of diabetes mellitus and neurodegenerative disorders. Upon their intestinal absorption, dietary sugars and á-dicarbonyl compounds interact with blood proteins yielding AGEs. Although the differences in glycation potential of monosaccharides are well characterized, the underlying mechanisms are poorly understood. To address this question, D-glucose, D-fructose and L-ascorbic acid were incubated with human serum albumin (HSA). The sugars and á-dicarbonyl intermediates of their degradation were analyzed in parallel to protein glycation patterns (exemplified with hydroimidazolone modifications of arginine residues and products of their hydrolysis) by bottom-up proteomics and computational chemistry. Glycation of HSA with sugars revealed 9 glyoxal- and 14 methylglyoxal-derived modification sites. Their dynamics was sugar-specific and depended on concentrations of á-dicarbonyls, their formation kinetics, and presence of stabilizing residues in close proximity to the glycation sites.
Publikation

Adem, A. A.; Belete, A.; Soboleva, A.; Frolov, A.; Tessema, E. N.; Gebre-Mariam, T.; Neubert, R. H.; Structural characterization of plant glucosylceramides and thecorresponding ceramides by UHPLC-LTQ-Orbitrap mass spectrometry J. Pharm. Biomed. Anal. 192, 113677, (2021) DOI: 10.1016/j.jpba.2020.113677

Ceramides (CERs) play a major role in skin barrier function and direct replacement of depleted skin CERs,due to skin disorder or aging, has beneficial effects in improving skin barrier function and skin hydration.Though, plants are reliable source of CERs, absence of economical and effective method of hydrolysis toconvert the dominant plant sphingolipid, glucosylceramides (GlcCERs), into CERs remains a challenge.This study aims at exploring alternative GlcCERs sources and chemical method of hydrolysis into CERsfor dermal application. GlcCERs isolated from lupin bean (Lupinus albus), mung bean (Vigna radiate) andnaked barley (Hordium vulgare) were identified using ultra high performance liquid chromatographyhyphenated with atmospheric pressure chemical ionization - high resolution tandem mass spectrometer(UHPLC/APCI-HRMS/MS) and quantified with validated automated multiple development-high perfor-mance thin layer chromatography (AMD-HPTLC) method. Plant GlcCERs were hydrolyzed into CERs withmild acid hydrolysis (0.1 N HCl) after treating them with oxidizing agent, NaIO4,and reducing agent,NaBH4. GlcCERs with 4,8-sphingadienine, 8-sphingenine and 4-hydroxy-8-sphingenine sphingoid baseslinked with C14 to C26 -hydroxylated fatty acids (FAs) were identified. Single GlcCER (m/z 714.5520)was dominant in lupin and mung beans while five major GlcCERs species (m/z 714.5520, m/z 742.5829,m/z 770.6144, m/z 842.6719 and m/z 844.56875) were obtained from naked barley. The GlcCERs con-tents of the three plants were comparable. However, lupin bean contains predominantly (> 98 %) a singleGlcCER (m/z 714.5520). Considering the affordability, GlcCER content and yield, lupin bean would bethe preferred alternative commercial source of GlcCERs. CER species bearing 4,8-sphingadienine and 8-sphingenine sphingoid bases attached to C14 to 24 FAs were found after mild acid hydrolysis. CER specieswith m/z 552.4992 was the main component in the beans while CER with m/z 608.5613 was dominantin the naked barley. However, CERs with 4-hydroxy-8-sphingenine sphingoid base were not detected inUHPLC-HRMS/MS study suggesting that the method works for mainly GlcCERs carrying dihydroxy sph-ingoid bases. The method is economical and effective which potentiates the commercialization of plantCERs for dermal application.
Bücher und Buchkapitel

Soboleva, A.; Vashurina, N.; Frolov, A.; Individual glycation sites as biomarkers of Type 2 diabetes mellitus (Dr. Anca Pantea Stoian). IntechOpen (2021) ISBN: 978-1-83881-903-3 DOI: 10.5772/intechopen.95532

Type 2 diabetes mellitus (T2DM) is a widely spread metabolic disease, the initial stages of which are asymptomatic and have no clinically recognizable manifestation. At the molecular level, T2DM is manifested with essential non-enzymatic structural changes of intra- and extracellular proteins, mostly represented with oxidation and glycation of multiple residues. Protein glycation is one of the most universal markers of T2DM, and is recognized as an indirect, but adequate indicator of plasma glucose levels over prolonged periods of time. Unfortunately, glycated hemoglobin (HbA1c) – the universally accepted T2DM marker, is insensitive for short-term excursions of blood glucose, which are known to precede the onset of disease. Therefore, new generation biomarkers, giving access to the time dimension of Maillard reaction in blood, are desired. In this context, establishment of individual glycation sites of plasma proteins as new T2DM biomarkers might be a promising approach. Indeed, involvement of proteins with different half-life times in such analysis will make the time dimension of protein glycation in blood available and will allow early recognition of blood sugar fluctuations, occurring within few weeks or even days.
Publikation

Leonova, T.; Popova, V.; Tsarev, A.; Henning, C.; Antonova, K.; Rogovskaya, N.; Vikhnina, M.; Baldensperger, T.; Soboleva, A.; Dinastia, E.; Dorn, M.; Shiroglasova, O.; Grishina, T.; Balcke, G. U.; Ihling, C.; Smolikova, G.; Medvedev, S.; Zhukov, V. A.; Babakov, V.; Tikhonovich, I. A.; Glomb, M. A.; Bilova, T.; Frolov, A.; Does Protein Glycation Impact on the Drought-Related Changes in Metabolism and Nutritional Properties of Mature Pea (Pisum sativum L.) Seeds? Int. J. Mol. Sci. 21, 567, (2020) DOI: 10.3390/ijms21020567

Protein glycation is usually referred to as an array of non-enzymatic post-translational modifications formed by reducing sugars and carbonyl products of their degradation. The resulting advanced glycation end products (AGEs) represent a heterogeneous group of covalent adducts, known for their pro-inflammatory effects in mammals, and impacting on pathogenesis of metabolic diseases and ageing. In plants, AGEs are the markers of tissue ageing and response to environmental stressors, the most prominent of which is drought. Although water deficit enhances protein glycation in leaves, its effect on seed glycation profiles is still unknown. Moreover, the effect of drought on biological activities of seed protein in mammalian systems is still unstudied with respect to glycation. Therefore, here we address the effects of a short-term drought on the patterns of seed protein-bound AGEs and accompanying alterations in pro-inflammatory properties of seed protein in the context of seed metabolome dynamics. A short-term drought, simulated as polyethylene glycol-induced osmotic stress and applied at the stage of seed filling, resulted in the dramatic suppression of primary seed metabolism, although the secondary metabolome was minimally affected. This was accompanied with significant suppression of NF-kB activation in human SH-SY5Y neuroblastoma cells after a treatment with protein hydrolyzates, isolated from the mature seeds of drought-treated plants. This effect could not be attributed to formation of known AGEs. Most likely, the prospective anti-inflammatory effect of short-term drought is related to antioxidant effect of unknown secondary metabolite protein adducts, or down-regulation of unknown plant-specific AGEs due to suppression of energy metabolism during seed filling.
Publikation

Smolikova, G.; Gorbach, D.; Lukasheva, E.; Mavropolo-Stolyarenko, G.; Bilova, T.; Soboleva, A.; Tsarev, A.; Romanovskaya, E.; Podolskaya, E.; Zhukov, V. A.; Tikhonovich, I.; Medvedev, S.; Hoehenwarter, W.; Frolov, A.; Bringing new methods to the seed proteomics platform: Challenges and perspectives Int. J. Mol. Sci. 21, 9162, (2020) DOI: 10.3390/ijms21239162

For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Publikation

Mamontova, T.; Afonin, A. M.; Ihling, C.; Soboleva, A.; Lukasheva, E.; Sulima, A. S.; Shtark, O. Y.; Akhtemova, G. A.; Povydysh, M. N.; Sinz, A.; Frolov, A.; Zhukov, V. A.; Tikhonovich, I. A.; Profiling of Seed Proteome in Pea (Pisum sativum L.) Lines Characterized with High and Low Responsivity to Combined Inoculation with Nodule Bacteria and Arbuscular Mycorrhizal Fungi Molecules 24, 1603, (2019) DOI: 10.3390/molecules24081603

Legume crops represent the major source of food protein and contribute to human nutrition and animal feeding. An essential improvement of their productivity can be achieved by symbiosis with beneficial soil microorganisms—rhizobia (Rh) and arbuscular mycorrhizal (AM) fungi. The efficiency of these interactions depends on plant genotype. Recently, we have shown that, after simultaneous inoculation with Rh and AM, the productivity gain of pea (Pisum sativum L) line K-8274, characterized by high efficiency of interaction with soil microorganisms (EIBSM), was higher in comparison to a low-EIBSM line K-3358. However, the molecular mechanisms behind this effect are still uncharacterized. Therefore, here, we address the alterations in pea seed proteome, underlying the symbiosis-related productivity gain, and identify 111 differentially expressed proteins in the two lines. The high-EIBSM line K-8274 responded to inoculation by prolongation of seed maturation, manifested by up-regulation of proteins involved in cellular respiration, protein biosynthesis, and down-regulation of late-embryogenesis abundant (LEA) proteins. In contrast, the low-EIBSM line K-3358 demonstrated lower levels of the proteins, related to cell metabolism. Thus, we propose that the EIBSM trait is linked to prolongation of seed filling that needs to be taken into account in pulse crop breeding programs. The raw data have been deposited to the ProteomeXchange with identifier PXD013479.
Publikation

Antonova, K.; Vikhnina, M.; Soboleva, A.; Mehmood, T.; Heymich, M.-L.; Leonova, T.; Bankin, M.; Lukasheva, E.; Gensberger-Reigl, S.; Medvedev, S.; Smolikova, G.; Pischetsrieder, M.; Frolov, A.; Analysis of Chemically Labile Glycation Adducts in Seed Proteins: Case Study of Methylglyoxal-Derived Hydroimidazolone 1 (MG-H1) Int. J. Mol. Sci. 20, 3659, (2019) DOI: 10.3390/ijms20153659

Seeds represent the major source of food protein, impacting on both human nutrition and animal feeding. Therefore, seed quality needs to be appropriately addressed in the context of viability and food safety. Indeed, long-term and inappropriate storage of seeds might result in enhancement of protein glycation, which might affect their quality and longevity. Glycation of seed proteins can be probed by exhaustive acid hydrolysis and quantification of the glycation adduct Nɛ-(carboxymethyl)lysine (CML) by liquid chromatography-mass spectrometry (LC-MS). This approach, however, does not allow analysis of thermally and chemically labile glycation adducts, like glyoxal-, methylglyoxal- and 3-deoxyglucosone-derived hydroimidazolones. Although enzymatic hydrolysis might be a good solution in this context, it requires aqueous conditions, which cannot ensure reconstitution of seed protein isolates. Because of this, the complete profiles of seed advanced glycation end products (AGEs) are not characterized so far. Therefore, here we propose the approach, giving access to quantitative solubilization of seed proteins in presence of sodium dodecyl sulfate (SDS) and their quantitative enzymatic hydrolysis prior to removal of SDS by reversed phase solid phase extraction (RP-SPE). Using methylglyoxal-derived hydroimidazolone 1 (MG-H1) as a case example, we demonstrate the applicability of this method for reliable and sensitive LC-MS-based quantification of chemically labile AGEs and its compatibility with bioassays.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search