zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Lam, Y. T. H.; Palfner, G.; Lima, C.; Porzel, A.; Brandt, W.; Frolov, A.; Sultani, H.; Franke, K.; Wagner, C.; Merzweiler, K.; Wessjohann, L. A.; Arnold, N.; Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa Phytochemistry 165, 112048, (2019) DOI: 10.1016/j.phytochem.2019.05.021

For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius. Four undescribed diterpenoids, named pyromyxones A-D, were isolated from fruiting bodies of C. pyromyxa. Their chemical structures were elucidated based on comprehensive one- and two-dimensional NMR spectroscopic analysis, ESI-HRMS measurements, as well as X-ray crystallography. In addition, the absolute configurations of pyromyxones A-D were established with the aid of JH,H, NOESY spectra and quantum chemical CD calculation. The pyromyxones A-D possess the undescribed nor-guanacastane skeleton. Tested pyromyxones A, B, and D exhibit only weak activity against gram-positive Bacillus subtilis and gram-negative Aliivibrio fischeri as well as the phytopathogenic fungi Botrytis cinerea, Septoria tritici and Phytophthora infestans.
Publikation

Tahara, K.; Nishiguchi, M.; Frolov, A.; Mittasch, J.; Milkowski, C.; Identification of UDP glucosyltransferases from the aluminum-resistant tree Eucalyptus camaldulensis forming β-glucogallin, the precursor of hydrolyzable tannins Phytochemistry 152, 154-161, (2018) DOI: 10.1016/j.phytochem.2018.05.005

In the highly aluminum-resistant tree Eucalyptus camaldulensis, hydrolyzable tannins are proposed to play a role in internal detoxification of aluminum, which is a major factor inhibiting plant growth on acid soils. To understand and modulate the molecular mechanisms of aluminum detoxification by hydrolyzable tannins, the biosynthetic genes need to be identified. In this study, we identified and characterized genes encoding UDP-glucose:gallate glucosyltransferase, which catalyzes the formation of 1-O-galloyl-β-d-glucose (β-glucogallin), the precursor of hydrolyzable tannins. By homology-based cloning, seven full-length candidate cDNAs were isolated from E. camaldulensis and expressed in Escherichia coli as recombinant N-terminal His-tagged proteins. Phylogenetic analysis classified four of these as UDP glycosyltransferase (UGT) 84A subfamily proteins (UGT84A25a, -b, UGT84A26a, -b) and the other three as UGT84J subfamily proteins (UGT84J3, -4, -5). In vitro enzyme assays showed that the UGT84A proteins catalyzed esterification of UDP–glucose and gallic acid to form 1-O-galloyl-β-d-glucose, whereas the UGT84J proteins were inactive. Further analyses with UGT84A25a and −26a indicated that they also formed 1-O-glucose esters of other structurally related hydroxybenzoic and hydroxycinnamic acids with a preference for hydroxybenzoic acids. The UGT84A genes were expressed in leaves, stems, and roots of E. camaldulensis, regardless of aluminum stress. Taken together, our results suggest that the UGT84A subfamily enzymes of E. camaldulensis are responsible for constitutive production of 1-O-galloyl-β-d-glucose, which is the first step of hydrolyzable tannin biosynthesis.
Publikation

Lübken, T.; Schmidt, J.; Porzel, A.; Arnold, N.; Wessjohann, L.; Hygrophorones A–G: fungicidal cyclopentenones from Hygrophorus species (Basidiomycetes) Phytochemistry 65, 1061-1071, (2004) DOI: 10.1016/j.phytochem.2004.01.023

Twenty new 5-(hydroxyalkyl)-2-cyclopentenone derivatives (hygrophorones) could be isolated from Hygrophorus latitabundus, H. olivaceoalbus, H. persoonii, and H. pustulatus. Their fungicidal activity was exemplarily tested. The hygrophorones have structural similarities to the antibiotic pentenomycin. Chemically, hygrophorones are 2-cyclopentenones with hydroxy or acetoxy substituents at C-4 and/or C-5. An odd-numbered 1′ oxidized alkyl chain (C11, C13, C15, or C17) is attached at C-5. In addition, from H. persoonii the new γ-butyrolactone derivative [5-(E)-2-hydroxytetradexylidene-5H-furan-2-one] could be isolated. Some hygrophorones are responsible for the color reaction of the stipes of these fungi upon treatment with potassium hydroxide solution. Structural elucidations are based on 1D (1H, 13C) and 2D (COSY, NOESY, HSQC, HMBC) NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.A series of new cyclopentenone derivatives and butyrolactones with antifungical activity could be isolated from fruit bodies of the basidiomyceteous genus Hygrophorus. Structural elucidations are based on 1D and 2D NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search