zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 1 von 1.


Momcilovic, M.; Eichhorn, T.; Blazevski, J.; Schmidt, H.; Kaluđerović, G. N.; Stosic-Grujicic; S. In vitro effects of binuclear (η 6-p-cymene)ruthenium(II) complex containing bridging bis(nicotinate)-polyethylene glycol ester ligand on differentiation pathways of murine Th lymphocytes activated by T cell mitogen J Biol Inorg Chem 20, 575-583, (2015) DOI: 10.1007/s00775-015-1242-x

T cell differentiation into distinct T helper (Th) subpopulations is crucial in governing acquired immune responses as well as some inflammatory and autoimmune disorders. This study investigated potential of the novel neutral binuclear ruthenium(II) complexes 1–8 with general formula [{RuCl2(η6-p-cym)}2μ-(N∩N)] (N∩N = bis(nicotinate)- and bis(iso-nicotinate)-polyethylene glycol esters; (3-py)COO(CH2CH2O) n CO(3-py) and (4-py)COO(CH2CH2O) n CO(4-py); n = 1–4), as well as [RuCl2(η6-p-cym)(nic)] (R1, nic = nicotinate) and [RuCl2(η6-p-cym)(inic)] (R2, inic = isonicotinate) as an immunomodulatory agents capable to direct Th cell differentiation. From all investigated complexes, [{RuCl2(η6-p-cym)}2μ-{(3-py)COO(CH2CH2O)4CO(3-py)}] (4) was selected for further study because it did not affect splenocyte viability (in concentration up to 50 μM), but significantly reduced secretion of representative Th1 cytokine, IFN-γ induced by T cell mitogen. Besides IFN-γ, 4 inhibited dose dependently expression and production of representative Th17 cytokine, IL-17, in these cells. Otherwise, the production of anti-inflammatory cytokines IL-4 and IL-10 was upregulated. Also, 4 significantly increased CD4+CD25+FoxP3+ Treg cell frequency in the activated splenocytes. Moreover, ConA-induced expression of Th1 transcription factors, T-bet and STAT1, as well as of Th17-related protein STAT3 was attenuated upon exposure to 4, while the expression of Th2-related transcription factor GATA3 remained stable. In conclusion, ruthenium(II) complex 4 modulates immune system cell functions in vitro by inhibiting T cell differentiation towards pathogenic Th1/Th17 phenotype and inducing a regulatory phenotype characterized by IL-10 and IL-4 production, which may provide novel therapeutic opportunities for immune-inflammatory and/or autoimmune disorders.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search