zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Publikation

Farag, M. A.; Baky, M. H.; Morgan, I.; Khalifa, M. R.; Rennert, R.; Mohamed, O. G.; El-Sayed, M. M.; Porzel, A.; Wessjohann, L. A.; Ramadan, N. S.; Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking RSC Adv. 13, 21471-21493, (2023) DOI: 10.1039/d3ra03141a

Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol D-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
Publikation

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86, 1373-1384, (2023) DOI: 10.1021/acs.jnatprod.2c00716

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation

Leonova, T.; Ihling, C.; Saoud, M.; Frolova, N.; Rennert, R.; Wessjohann, L. A.; Frolov, A.; Does filter-aided sample preparation provide sufficient method linearity for quantitative plant shotgun proteomics? Front. Plant Sci. 13, 874761, (2022) DOI: 10.3389/fpls.2022.874761

Due to its outstanding throughput and analytical resolution, gel-free LC-based shotgun proteomics represents the gold standard of proteome analysis. Thereby, the efficiency of sample preparation dramatically affects the correctness and reliability of protein quantification. Thus, the steps of protein isolation, solubilization, and proteolysis represent the principal bottleneck of shotgun proteomics. The desired performance of the sample preparation protocols can be achieved by the application of detergents. However, these compounds ultimately compromise reverse-phase chromatographic separation and disrupt electrospray ionization. Filter-aided sample preparation (FASP) represents an elegant approach to overcome these limitations. Although this method is comprehensively validated for cell proteomics, its applicability to plants and compatibility with plant-specific protein isolation protocols remain to be confirmed. Thereby, the most important gap is the absence of the data on the linearity of underlying protein quantification methods for plant matrices. To fill this gap, we address here the potential of FASP in combination with two protein isolation protocols for quantitative analysis of pea (Pisum sativum) seed and Arabidopsis thaliana leaf proteomes by the shotgun approach. For this aim, in comprehensive spiking experiments with bovine serum albumin (BSA), we evaluated the linear dynamic range (LDR) of protein quantification in the presence of plant matrices. Furthermore, we addressed the interference of two different plant matrices in quantitative experiments, accomplished with two alternative sample preparation workflows in comparison to conventional FASP-based digestion of cell lysates, considered here as a reference. The spiking experiments revealed high sensitivities (LODs of up to 4 fmol) for spiked BSA and LDRs of at least 0.6 × 102. Thereby, phenol extraction yielded slightly better recoveries, whereas the detergent-based method showed better linearity. Thus, our results indicate the very good applicability of FASP to quantitative plant proteomics with only limited impact of the protein isolation technique on the method’s overall performance.
Publikation

Dube, M.; Llanes, D.; Saoud, M.; Rennert, R.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N.; Albatrellus confluens (Alb. & Schwein.) Kotl. & Pouz.: Natural fungal compounds and synthetic derivatives with in vitro anthelmintic activities and antiproliferative effects against two human cancer cell lines Molecules 27, 2950, (2022) DOI: 10.3390/molecules27092950

Neglected tropical diseases affect the world’s poorest populations with soil-transmitted helminthiasis and schistosomiasis being among the most prevalent ones. Mass drug administration is currently the most important control measure, but the use of the few available drugs is giving rise to increased resistance of the parasites to the drugs. Different approaches are needed to come up with new therapeutic agents against these helminths. Fungi are a source of secondary metabolites, but most fungi remain largely uninvestigated as anthelmintics. In this report, the anthelmintic activity of Albatrellus confluens against Caenorhabditis elegans was investigated using bio-assay guided isolation. Grifolin (1) and neogrifolin (2) were identified as responsible for the anthelmintic activity. Derivatives 4–6 were synthesized to investigate the effect of varying the prenyl chain length on anthelmintic activity. The isolated compounds 1 and 2 and synthetic derivatives 4–6, as well as their educts 7–10, were tested against Schistosoma mansoni (adult and newly transformed schistosomula), Strongyloides ratti, Heligmosomoides polygyrus, Necator americanus, and Ancylostoma ceylanicum. Prenyl-2-orcinol (4) and geranylgeranyl-2-orcinol (6) showed promising activity against newly transformed schistosomula. The compounds 1, 2, 4, 5, and 6 were also screened for antiproliferative or cytotoxic activity against two human cancer lines, viz. prostate adenocarcinoma cells (PC-3) and colorectal adenocarcinoma cells (HT-29). Compound 6 was determined to be the most effective against both cell lines with IC50 values of 16.1 µM in PC-3 prostate cells and 33.7 µM in HT-29 colorectal cells.
Publikation

Bin Ware, I.; Franke, K.; Hussain, H.; Morgan, I.; Rennert, R.; Wessjohann, L. A.; Bioactive phenolic compounds from Peperomia obtusifolia Molecules 27, 4363, (2022) DOI: 10.3390/molecules27144363

Peperomia obtusifolia (L.) A. Dietr., native to Middle America, is an ornamental plant also traditionally used for its mild antimicrobial properties. Chemical investigation on the leaves of P. obtusifolia resulted in the isolation of two previously undescribed compounds, named peperomic ester (1) and peperoside (2), together with five known compounds, viz. N-[2-(3,4-dihydroxyphenyl)ethyl]-3,4-dihydroxybenzamide (3), becatamide (4), peperobtusin A (5), peperomin B (6), and arabinothalictoside (7). The structures of these compounds were elucidated by 1D and 2D NMR techniques and HREIMS analyses. Compounds 1–7 were evaluated for their anthelmintic (against Caenorhabditis elegans), antifungal (against Botrytis cinerea, Septoria tritici and Phytophthora infestans), antibacterial (against Bacillus subtilis and Aliivibrio fischeri), and antiproliferative (against PC-3 and HT-29 human cancer cell lines) activities. The known peperobtusin A (5) was the most active compound against the PC-3 cancer cell line with IC50 values of 25.6 µM and 36.0 µM in MTT and CV assays, respectively. This compound also induced 90% inhibition of bacterial growth of the Gram-positive B. subtilis at a concentration of 100 µM. In addition, compound 3 showed anti-oomycotic activity against P. infestans with an inhibition value of 56% by using a concentration of 125 µM. However, no anthelmintic activity was observed.
Publikation

Makong, Y. S.; Fotso, G. W.; Mouthe, G. H.; Lenta, B.; Rennert, R.; Sewald, N.; Arnold, N.; Wansi, J. D.; Ngadjui, B. T.; Bruceadysentoside A, a new pregnane glycoside and others secondary metabolites with cytotoxic activity from brucea antidysenterica J. F. Mill. (simaroubaceae) Nat. Prod. Res. 35, 2037-2043, (2021) DOI: 10.1080/14786419.2019.1655024

The chemical investigation of the root barks leaves and stem barks of Brucea antidysenterica J. F. Mill. (Simaroubaceae) led to the isolation of a new pregnane glycoside, named Bruceadysentoside A or 3-O-β-L-arabinopyranosyl-pregn-5-en-20-one (1) together with seventeen known compounds. Their structures were established from spectral data, mainly HRESIMS, 1 D and 2 D NMR and by comparison with literature data. Compounds 1, 2, 5, 6, 8, 10, 12 and 13 were tested in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. No substantial activities were recorded for 2, 10, 12 and 13 (up to 10 μM concentration). 1, 5 and 8 did not show strong anti-proliferative effects up to 100 μM, however, 6 exhibited a stronger anti-proliferative effect with IC50 values of ∼ 100 μM against PC-3 and ∼ 200 μM against HT-29.
Publikation

Dube, M.; Saoud, M.; Rennert, R.; Fotso, G. W.; Andrae-Marobela, K.; Imming, P.; Häberli, C.; Keiser, J.; Arnold, N.; Anthelmintic activity and cytotoxic effects of compounds isolated from the fruits of Ozoroa insignis Del. (Anacardiaceae) Biomolecules 11, 1893, (2021) DOI: 10.3390/biom11121893

Ozoroa insignis Del. is an ethnobotanical plant widely used in traditional medicine for various ailments, including schistosomiasis, tapeworm, and hookworm infections. From the so far not investigated fruits of Ozoroa insignis, the anthelmintic principles could be isolated through bioassay-guided isolation using Caenorhabditis elegans and identified by NMR spectroscopic analysis and mass spectrometric studies. Isolated 6-[8(Z)-pentadecenyl] anacardic (1), 6-[10(Z)-heptadecenyl] anacardic acid (2), and 3-[7(Z)-pentadecenyl] phenol (3) were evaluated against the 5 parasitic organisms Schistosoma mansoni (adult and newly transformed schistosomula), Strongyloides ratti, Heligmosomoides polygyrus, Necator americanus, and Ancylostoma ceylanicum, which mainly infect humans and other mammals. Compounds 1–3 showed good activity against Schistosoma mansoni, with compound 1 showing the best activity against newly transformed schistosomula with 50% activity at 1µM. The isolated compounds were also evaluated for their cytotoxic properties against PC-3 (human prostate adenocarcinoma) and HT-29 (human colorectal adenocarcinoma) cell lines, whereby compounds 2 and 3 showed antiproliferative activity in both cancer cell lines, while compound 1 exhibited antiproliferative activity only on PC-3 cells. With an IC50 value of 43.2 µM, compound 3 was found to be the most active of the 3 investigated compounds.
Publikation

Tchatchouang Noulala, C. G.; Fotso, G. W.; Rennert, R.; Lenta, B. N.; Sewald, N.; Arnold, N.; Happi, E. N.; Ngadjui, B. T.; Mesomeric form of quaternary indoloquinazoline alkaloid and other constituents from the Cameroonian Rutaceae Araliopsis soyauxii Engl. Biochem. Syst. Ecol. 91, 104050, (2020) DOI: 10.1016/j.bse.2020.104050

A mesomeric form of quaternary indoloquinazoline alkaloid, soyauxinium chloride (1) was obtained through the chemical investigation of stem bark and roots of Araliopsis soyauxii Engl. [syn. Vepris soyauxii (Engl.) Mziray] (Rutaceae) together with fifteen known compounds, including three furoquinoline alkaloids, three 2-quinolones, two limonoids, two triterpenes, two steroids, a coumarin, an acridone alkaloid, and a flavonoid glycoside. Their structures were established by comprehensive spectroscopic and spectrometric analyses (1D and 2D NMR, ESI-HR-MS) and by comparison with previously reported data. 13C NMR data of araliopsinine are also reported here for the first time. The isolated compounds were screened in vitro for their effects on the viability of two different human cancer cell lines, namely prostate PC-3 adenocarcinoma cells and colorectal HT-29 adenocarcinoma cells. However, none of the tested compounds exhibited strong anti-proliferative or cytotoxic activities, to either prostate PC-3 cells or colon HT-29 cells. At 100 μM, the furoquinoline maculine showed a slightly increased anti-proliferative effect, however, exclusively on HT-29 cells. The chemotaxonomic significance of the isolated compounds has also been discussed.
Publikation

Khan, M. F.; Nasr, F. A.; Noman, O. M.; Alyhya, N. A.; Ali, I.; Saoud, M.; Rennert, R.; Dube, M.; Hussain, W.; Green, I. R.; Basudan, O. A. M.; Ullah, R.; Anazi, S. H.; Hussain, H.; Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects Molecules 25, 4160, (2020) DOI: 10.3390/molecules25184160

Cichorium intybus L., (chicory) is employed in various traditional medicines to treat a wide range of diseases and disorders. In the current investigation, two new naphthalane derivatives viz., cichorins D (1) and E (2), along with one new anthraquinone cichorin F (3), were isolated from Cichorium intybus. In addition, three previously reported compounds viz., β-sitosterol (4), β-sitosterol β-glucopyranoside (5), and stigmasterol (6) were also isolated from Cichorium intybus. Their structures were established via extensive spectroscopic data, including 1D (1H and 13C) and 2D NMR (COSY, HSQC and HMBC), and ESIMS. Cichorin E (2) has a weak cytotoxic effect on breast cancer cells (MDA-MB-468: IC50: 85.9 µM) and Ewing’s sarcoma cells (SK-N-MC: IC50: 71.1 µM); cichorin F (3) also illustrated weak cytotoxic effects on breast cancer cells (MDA-MB-468: IC50: 41.0 µM and MDA-MB-231: IC50: 45.6 µM), and SK-N-MC cells (IC50: 71.9 µM). Moreover compounds 1–3 did not show any promising anthelmintic effects.
Publikation

Kufka, R.; Rennert, R.; Kaluđerović, G. N.; Weber, L.; Richter, W.; Wessjohann, L. A.; Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells Beilstein J. Org. Chem. 15, 96-105, (2019) DOI: 10.3762/bjoc.15.11

Tubugi-1 is a small cytotoxic peptide with picomolar cytotoxicity. To improve its cancer cell targeting, it was conjugated using a universal, modular disulfide derivative. This allowed conjugation to a neuropeptide-Y (NPY)-inspired peptide [K4(C-βA-),F7,L17,P34]-hNPY, acting as NPY Y1 receptor (hY1R)-targeting peptide, to form a tubugi-1–SS–NPY disulfide-linked conjugate. The cytotoxic impacts of the novel tubugi-1–NPY peptide–toxin conjugate, as well as of free tubugi-1, and tubugi-1 bearing the thiol spacer (liberated from tubugi-1–NPY conjugate), and native tubulysin A as reference were investigated by in vitro cell viability and proliferation screenings. The tumor cell lines HT-29, Colo320 (both colon cancer), PC-3 (prostate cancer), and in conjunction with RT-qPCR analyses of the hY1R expression, the cell lines SK-N-MC (Ewing`s sarcoma), MDA-MB-468, MDA-MB-231 (both breast cancer) and 184B5 (normal breast; chemically transformed) were investigated. As hoped, the toxicity of tubugi-1 was masked, with IC50 values decreased by ca. 1,000-fold compared to the free toxin. Due to intracellular linker cleavage, the cytotoxic potency of the liberated tubugi-1 that, however, still bears the thiol spacer (tubugi-1-SH) was restored and up to 10-fold higher compared to the entire peptide–toxin conjugate. The conjugate shows toxic selectivity to tumor cell lines overexpressing the hY1R receptor subtype like, e.g., the hard to treat triple-negative breast cancer MDA-MB-468 cells.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search