zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Matamoros, M. A.; Kim, A.; Peñuelas, M.; Ihling, C.; Griesser, E.; Hoffmann, R.; Fedorova, M.; Frolov, A.; Becana, M.; Protein Carbonylation and Glycation in Legume Nodules Plant Physiol. 177, 1510-1528, (2018) DOI: 10.1104/pp.18.00533

Nitrogen fixation is an agronomically and environmentally important process catalyzed by bacterial nitrogenase within legume root nodules. These unique symbiotic organs have high metabolic rates and produce large amounts of reactive oxygen species that may modify proteins irreversibly. Here, we examined two types of oxidative posttranslational modifications of nodule proteins: carbonylation, which occurs by direct oxidation of certain amino acids or by interaction with reactive aldehydes arising from cell membrane lipid peroxides; and glycation, which results from the reaction of Lys and Arg residues with reducing sugars or their auto-oxidation products. We used a strategy based on the enrichment of carbonylated peptides by affinity chromatography followed by liquid chromatography-tandem mass spectrometry to identify 369 oxidized proteins in bean (Phaseolus vulgaris) nodules. Of these, 238 corresponded to plant proteins and 131 to bacterial proteins. Lipid peroxidation products induced most carbonylation sites. This study also revealed that carbonylation has major effects on two key nodule proteins. Metal-catalyzed oxidation caused inactivation of malate dehydrogenase and aggregation of leghemoglobin. In addition, numerous glycated proteins were identified in vivo, including three key nodule proteins: sucrose synthase, glutamine synthetase, and glutamate synthase. Label-free quantification identified 10 plant proteins and 18 bacterial proteins as age-specifically glycated. Overall, our results suggest that the selective carbonylation or glycation of crucial proteins involved in nitrogen metabolism, transcriptional regulation, and signaling may constitute a mechanism to control cell metabolism and nodule senescence.
Publikation

Greifenhagen, U.; Frolov, A.; Blüher, M.; Hoffmann, R.; Site-specific analysis of advanced glycation end products in plasma proteins of type 2 diabetes mellitus patients Anal. Bioanal. Chem. 408, 5557-5566, (2016) DOI: 10.1007/s00216-016-9651-4

Advanced glycation end products (AGEs) are posttranslational modifications formed non-enzymatically from the reaction of carbohydrates and their degradation products with proteins. Accumulation of AGEs is associated with the progression of severe diabetic complications, for example, and elevated tissue levels of AGEs might even predict these pathologies. As AGE formation is often site-specific, mapping of these modification sites may reveal more sensitive and specific markers than the global tissue level. Here, 42 AGE modifications were identified in a bottom-up proteomic approach by tandem mass spectrometry, which corresponded to 36 sites in 22 high to medium abundant proteins in individual plasma samples obtained from type 2 diabetes mellitus (T2DM) patients with long disease duration (>10 years). Major modifications were glarg (11 modification sites) and carboxymethylation (5) of arginine and formylation (8), acetylation (7), and carboxymethylation (7) of lysine residues. Relative quantification of these sites in plasma samples obtained from normoglycemic individuals (n = 47) and patients with T2DM being newly diagnosed (n = 47) or of medium (2–5 years, n = 20) and long disease duration (>10 years, n = 20) did not reveal any significant differences.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search