zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 19.

Publikation

Lam, Y. T. H.; Hoppe, J.; Dang, Q. N.; Porzel, A.; Soboleva, A.; Brandt, W.; Rennert, R.; Hussain, H.; Davari, M. D.; Wessjohann, L.; Arnold, N.; Purpurascenines A–C, azepino-indole alkaloids from Cortinarius purpurascens: Isolation, biosynthesis, and activity studies on the 5-HT2A receptor J. Nat. Prod. 86, 1373-1384, (2023) DOI: 10.1021/acs.jnatprod.2c00716

Three previously undescribed azepino-indole alkaloids, named purpurascenines A−C (1−3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1−3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet−Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A−C (1−3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor’s active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.
Publikation

Farag, M. A.; Baky, M. H.; Morgan, I.; Khalifa, M. R.; Rennert, R.; Mohamed, O. G.; El-Sayed, M. M.; Porzel, A.; Wessjohann, L. A.; Ramadan, N. S.; Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking RSC Adv. 13, 21471-21493, (2023) DOI: 10.1039/d3ra03141a

Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol D-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
Publikation

Zayed, A.; Abdelwareth, A.; Mohamed, T. A.; Fahmy, H. A.; Porzel, A.; Wessjohann, L. A.; Farag, M. A.; Dissecting coffee seeds metabolome in context of genotype, roasting degree, and blending in the Middle East using NMR and GC/MS techniques Food Chem. 373, 131452, (2022) DOI: 10.1016/j.foodchem.2021.131452

With a favored taste and various bioactivities, coffee has been consumed as a daily beverage worldwide. The current study presented a multi-faceted comparative metabolomics approach dissecting commercially available coffee products in the Middle East region for quality assessment and functional food purposes using NMR and GC/MS platforms. NMR metabolites fingerprinting led to identification of 18 metabolites and quantification (qNMR) of six prominent markers for standardization purposes. An increase of β-ethanolamine (MEA) reported for the first time, 5-(hydroxymethyl) furfural (5-HMF), concurrent with a reduction in chlorogenic acid, kahweol, and sucrose levels post roasting as revealed using multivariate data analyses (MVA). The diterpenes kahweol and cafestol were identified in green and roasted Coffea arabica, while 16-O-methyl cafestol in roasted C. robusta. Moreover, GC/MS identified a total of 143 metabolites belonging to 15 different chemical classes, with fructose found enriched in green C. robusta versus fatty acids abundance, i.e., palmitic and stearic acids in C. arabica confirming NMR results. These potential results aided to identify novel quality control attributes, i.e., ethanolamine, for coffee in the Middle East region and have yet to be confirmed in other coffee specimens.
Publikation

Moura, P. H. B.; Brandt, W.; Porzel, A.; Martins, R. C. C.; Leal, I. C. R.; Wessjohann, L. A.; Structural elucidation of an atropisomeric entcassiflavan-(4β→8)-epicatechin isolated from Dalbergia monetaria L.f. based on NMR and ECD calculations in comparison to experimental data Molecules 27, 2512, (2022) DOI: 10.3390/molecules27082512

A rare dihydoxyflavan-epicatechin proanthocyanidin, entcassiflavan-(4β→8)-epicatechin, was isolated from Dalbergia monetaria, a plant widely used by traditional people from the Amazon to treat urinary tract infections. The constitution and relative configuration of the compound were elucidated by HR-MS and detailed 1D- and 2D-NMR measurements. By comparing the experimental electronic circular dichroism (ECD) spectrum with the calculated ECD spectra of all 16 possible isomers, the absolute configuration, the interflavan linkage, and the atropisomers could be determined.
Publikation

Khattab, A. R.; Rasheed, D. M.; El-Haddad, A. E.; Porzel, A.; Wessjohann, L. A.; Farag, M. A.; Assessing phytoequivalency of four Zingiberaceae spices (galangals, turmeric and ginger) using a biochemometric approach: A case study Industrial Crops and Products 188, 115722, (2022) DOI: 10.1016/j.indcrop.2022.115722

The Zingiberaceae family (the ginger family) encompasses featured candidates used extensively in perfume, dyes, medicine as well as food industries. This study provides NMR metabolite fingerprinting, quantification and biological evaluation of four major plants viz. lesser and greater galangal, curcuma and ginger. 1H NMR derived metabolite profiles of the four spices were modeled via orthogonal partial least squares discriminate analysis (OPLS-DA). The cytotoxic activity of the four plants against colon and prostate cancer cell lines and in-vitro cyclooxygenase-1 inhibition activity were also evaluated. A correlation between the plants’ bioactivities and their 1H NMR metabolite profiles was established using OPLS and revealed putative metabolites responsible for these bioactivities. The most active cytotoxic plant was greater galangal due to its enrichment in galangal acetate. In contrast, lesser galangal exhibited the strongest anti-inflammatory action being enriched in 5-hydroxy-7-(4ꞌ-hydroxy-3 ꞌ-methoxyphenyl)-1-phenyl-3-heptanone and kaempferide. This study provides insight on the potential medicinal merit of genus Alpinia comparable to the more explored drugs turmeric and ginger within the Zingiberaceae family.
Publikation

Farag, M. A.; Sharaf El-Din, M. G.; Selim, M. A.; Owis, A. I.; Abouzid, S. F.; Porzel, A.; Wessjohann, L. A.; Otify, A.; Nuclear magnetic resonance metabolomics approach for the analysis of major legume sprouts coupled to chemometrics Molecules 26, 761, (2021) DOI: 10.3390/molecules26030761

Legume sprouts are a fresh nutritive source of phytochemicals of increasing attention worldwide owing to their many health benefits. Nuclear magnetic resonance (NMR) was utilized for the metabolite fingerprinting of 4 major legume sprouts, belonging to family Fabaceae, to be exploited for quality control purposes. Thirty-two metabolites were identified belonging to different classes, i.e., fatty acids, sugars, amino acids, nucleobases, organic acids, sterols, alkaloids, and isoflavonoids. Quantitative NMR was employed for assessing the major identified metabolite levels and multivariate data analysis was utilized to assess metabolome heterogeneity among sprout samples. Isoflavones were detected exclusively in Cicer sprouts, whereas Trigonella was characterized by 4-hydroxyisoleucine. Vicia sprouts were distinguished from other legume sprouts by the presence of L-Dopa versus acetate abundance in Lens. A common alkaloid in all sprouts was trigonelline, detected at 8–25 µg/mg, suggesting its potential role in legume seeds’ germination. Trigonelline was found at highest levels in Trigonella sprouts. The aromatic NMR region data (δ 11.0–5.0 ppm) provided a better classification power than the full range (δ 11.0–0.0 ppm) as sprout variations mostly originated from secondary metabolites, which can serve as chemotaxonomic markers.
Publikation

Stark, P.; Zab, C.; Porzel, A.; Franke, K.; Rizzo, P.; Wessjohann, L. A.; PSYCHE—A Valuable Experiment in Plant NMR-Metabolomics Molecules 25, 5125, (2020) DOI: 10.3390/molecules25215125

1H-NMR is a very reproducible spectroscopic method and, therefore, a powerful tool for the metabolomic analysis of biological samples. However, due to the high complexity of natural samples, such as plant extracts, the evaluation of spectra is difficult because of signal overlap. The new NMR “Pure Shift” methods improve spectral resolution by suppressing homonuclear coupling and turning multiplets into singlets. The PSYCHE (Pure Shift yielded by Chirp excitation) and the Zangger–Sterk pulse sequence were tested. The parameters of the more suitable PSYCHE experiment were optimized, and the extracts of 21 Hypericum species were measured. Different evaluation criteria were used to compare the suitability of the PSYCHE experiment with conventional 1H-NMR. The relationship between the integral of a signal and the related bin value established by linear regression demonstrates an equal representation of the integrals in binned PSYCHE spectra compared to conventional 1H-NMR. Using multivariate data analysis based on both techniques reveals comparable results. The obtained data demonstrate that Pure Shift spectra can support the evaluation of conventional 1H-NMR experiments.
Publikation

de Moura, P. H. B.; de Sousa, A. A.; Porzel, A.; Wessjohann, L. A.; Leal, I. C. R.; Martins, R. C. C.; Characterization of antibacterial proanthocyanidins of Dalbergia monetaria, an amazonian medicinal plant, by UHPLC-HRMS/MS Planta Med. 86, 858– 866, (2020) DOI: 10.1055/a-1170-8016

Dalbergia monetaria is an Amazonian plant whose bark is widely used to treat urinary tract infections. This paper describes a bio-guided study of ethanolic extracts from the bark and leaves of D. monetaria, in a search for metabolites active against human pathogenic bacteria. In vitro assays were performed against 10 bacterial strains, highlighting methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Fractioning of the extracts was performed using instrumental and classical techniques, and samples were characterized by UHPLC-HRMS/MS. Ethyl acetate fractions from bark and leaves showed similar antibacterial activities. EAFB is enriched in isoflavone C-glucosides and EAFL enriched in proanthocyanidins. Subfractions from EAFL presented higher activity and showed a complex profile of proanthocyanidins constructed by (epi)-cassiaflavan and (epi)-catechin units, including dimers, trimers and tetramers. The fragmentation pattern emphasized the neutral loss of cassiaflavan units by quinone-methide fission. Fraction SL7-6, constituted by (ent)-cassiaflavan-(ent)-cassiaflavan-(epi)-catechin isomers, showed the lowest MIC against the S. aureus and P. aeruginosa with values corresponding to 64 and 32 µg/mL, respectively. Cassiaflavan-proanthocyanidins have not been found previously in another botanical genus, except in Cassia, and the traditional medicinal use of D. monetaria might be related to the antibacterial activity of proanthocyanidins characterized in the species.
Publikation

Bathe, U.; Frolov, A.; Porzel, A.; Tissier, A.; CYP76 Oxidation Network of Abietane Diterpenes in Lamiaceae Reconstituted in Yeast J. Agr. Food Chem. 67, 13437-13450, (2019) DOI: 10.1021/acs.jafc.9b00714

Rosemary and sage species from Lamiaceae contain high amounts of structurally related but diverse abietane diterpenes. A number of substances from this compound family have potential pharmacological activities and are used in the food and cosmetic industry. This has raised interest in their biosynthesis. Investigations in Rosmarinus officinalis and some sage species have uncovered two main groups of cytochrome P450 oxygenases that are involved in the oxidation of the precursor abietatriene. CYP76AHs produce ferruginol and 11-hydroxyferruginol, while CYP76AKs catalyze oxidations at the C20 position. Using a modular Golden-Gate-compatible assembly system for yeast expression, these enzymes were systematically tested either alone or in combination. A total of 14 abietane diterpenes could be detected, 8 of which have not been reported thus far. We demonstrate here that yeast is a valid system for engineering and reconstituting the abietane diterpene network, allowing for the discovery of novel compounds with potential bioactivity.
Publikation

Lam, Y. T. H.; Palfner, G.; Lima, C.; Porzel, A.; Brandt, W.; Frolov, A.; Sultani, H.; Franke, K.; Wagner, C.; Merzweiler, K.; Wessjohann, L. A.; Arnold, N.; Nor-guanacastepene pigments from the Chilean mushroom Cortinarius pyromyxa Phytochemistry 165, 112048, (2019) DOI: 10.1016/j.phytochem.2019.05.021

For the first time, the pigment composition of basidiocarps from the Chilean mushroom Cortinarius pyromyxa was studied under various aspects like phylogeny, chemistry and antibiotic activity. A molecular biological study supports the monotypic position of C. pyromyxa in subgenus Myxacium, genus Cortinarius. Four undescribed diterpenoids, named pyromyxones A-D, were isolated from fruiting bodies of C. pyromyxa. Their chemical structures were elucidated based on comprehensive one- and two-dimensional NMR spectroscopic analysis, ESI-HRMS measurements, as well as X-ray crystallography. In addition, the absolute configurations of pyromyxones A-D were established with the aid of JH,H, NOESY spectra and quantum chemical CD calculation. The pyromyxones A-D possess the undescribed nor-guanacastane skeleton. Tested pyromyxones A, B, and D exhibit only weak activity against gram-positive Bacillus subtilis and gram-negative Aliivibrio fischeri as well as the phytopathogenic fungi Botrytis cinerea, Septoria tritici and Phytophthora infestans.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search