zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Krajnović, T.; Drača, D.; Kaluđerović, G. N.; Dunđerović, D.; Mirkov, I.; Wessjohann, L. A.; Maksimović-Ivanić, D.; Mijatović, S.; The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16-F10 murine melanoma model Food Chem. Toxicol. 129, 257-268, (2019) DOI: 10.1016/j.fct.2019.04.046

Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, gained increasing attention as a potential chemopreventive agent. In the present study, IXN antimetastatic potential in vitro against the highly invasive melanoma cell line B16-F10 and in vivo in a murine metastatic model was investigated. Melanoma cell viability was diminished in a dose-dependent manner following the treatment with IXN. This decrease was a consequence of autophagy and caspase-dependent apoptosis. Additionally, the dividing potential of highly proliferative melanoma cells was dramatically affected by this isoflavanone, which was in correlation with an abrogated cell colony forming potential, indicating changes in their metastatic features. Concordantly, IXN promoted strong suppression of the processes that define metastasis– cell adhesion, invasion, and migration. Further investigation at the molecular level revealed that the abolished metastatic potential of a melanoma subclone was due to disrupted integrin signaling. Importantly, these results were reaffirmed in vivo where IXN inhibited the development of lung metastatic foci in tumor-challenged animals. The results of the present study may highlight the beneficial effects of IXN on melanoma as the most aggressive type of skin cancer and will hopefully shed a light on the possible use of this prenylflavonoid in the treatment of metastatic malignancies.
Publikation

Drača, D.; Mijatović, S.; Krajnović, T.; Pristov, J. B.; Đukić, T.; Kaluđerović, G. N.; Wessjohann, L. A.; Maksimović-Ivanić, D.; The synthetic tubulysin derivative, tubugi-1, improves the innate immune response by macrophage polarization in addition to its direct cytotoxic effects in a murine melanoma model Exp. Cell Res. 380, 159-170, (2019) DOI: 10.1016/j.yexcr.2019.04.028

Synthetic tubugis are equally potent but more stable than their natural forms. Their anticancer potential was estimated on a solid melanoma in vitro and in vivo. Tubugi-1 induced the apoptosis in B16 cells accompanied with strong intracellular production of reactive species, subsequently imposing glutathione and thiol group depletion. Paradoxically, membrane lipids were excluded from the cascade of intracellular oxidation, according to malondialdehyde decrease. Although morphologically apoptosis was typical, externalization of phosphatidylserine (PS) as an early apoptotic event was not detected. Even their exposition is pivotal for apoptotic cell eradication, primary macrophages successfully eliminated PS-deficient tubugi-1 induced apoptotic cells. The tumor volume in animals exposed to the drug in therapeutic mode was reduced in comparison to control as well as to paclitaxel-treated animals. Importantly, macrophages isolated from tubugi-1 treated animals possessed conserved phagocytic activity and were functionally and phenotypically recognized as M1. The cytotoxic effect of tubugi-1 is accomplished through its ability to polarize the macrophages toward M1, probably by PS independent apoptotic cell engulfment. The unique potential of tubugi-1 to prime the innate immune response through the induction of a specific pattern of tumor cell apoptosis can be of extraordinary importance from fundamental and applicable aspects.
Publikation

Drača, D.; Mijatović, S.; Krajnović, T.; Kaluđerović, G. N.; Wessjohann, L. A.; Maksimović-Ivanić, D.; Synthetic Tubulysin Derivative, Tubugi-1, Against Invasive Melanoma Cells: The Cell Death Triangle Anticancer Res. 39, 5403-5415, (2019) DOI: 10.21873/anticanres.13734

Background/Aim: Tubugi-1 is a more stable and accessible synthetic counterpart of natural tubulysins. This study aimed to evaluate its cytotoxic potential against anaplastic human melanoma cells. Materials and Methods: The viability of A-375 cells was determined by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet assay. The type of cell death and proliferative rate were investigated using flow cytometry and fluorescent microscopy, while the molecular background was evaluated by western blot. Results: Tubugi-1 reduced the viability of A-375 cells, inducing massive micronucleation, followed by augmented expression of inhibitor of nuclear factor-κB and caspase-2, typical of a mitotic catastrophe. Disturbed proliferation and G2M block with prominent caspase activity, weakened the expression of B-cell lymphoma 2 and B-cell lymphoma 2-associated X transient up-regulation, coexisted with intensive autophagy. Specific inhibition of autophagy by chloroquine resulted in conversion from mitotic catastrophe to rapid apoptosis. Conclusion: Multilevel anticancer action of tubugi-1 is extended by co-application of an autophagy inhibitor, giving a new dimension in further preclinical advancement of this potential agent.
Publikation

Kaluđerović, G. N.; Bulatović, M.; Krajnović, T.; Paschke, R.; Zmejkovski, B. B.; Maksimović-Ivanić, D.; Mijatović, S.; (18-Crown-6)potassium(I) Trichlorido[28-acetyl-3-(tris-(hydroxylmethyl)amino-ethane)betulinic ester-κN]platinum(II): Synthesis and In Vitro Antitumor Activity Inorganics 5, 56, (2017) DOI: 10.3390/inorganics5030056

Synthesis of platinum(II) conjugate with acetylated betulinic acid tris(hydroxymethyl)aminomethane ester (BATRIS) is presented (BATRISPt). HR-ESI-MS and multinuclear NMR spectroscopy, as well as elemental analysis were used for characterization of BATRISPt. Cytotoxicity (3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), crystal violet (CV), and sulforhodamine B (SRB) assays) of BA, BATRIS, BATRISPt, and cisplatin were assessed on seven different tumor cell lines: melanoma B16, colon HCT116 and DLD-1, adenocarcinoma HeLa, breast MCF-7, and anaplastic thyroid tumor 8505C and SW1736; as well as normal MRC-5 fibroblasts. Furthermore, the effect of the mentioned compounds on the apoptosis (Annexin V/PI assay) and autophagy induction (acridine orange (AO) assay) as well as caspase 3, 8, and 9 activation were investigated on the selected B16 melanoma cell line. BATRISPt showed lower activity than BA, BATRIS, or cisplatin. All tested compounds triggered apoptosis in B16 cells. Induction of autophagy was observed in B16 cells exposed only to BATRIS. On the other hand, new conjugate activates caspases 8 and 9 in B16 cells with higher impact than BATRIS or cisplatin alone.
Publikation

Krajnović, T.; Kaluđerović, G. N.; Wessjohann, L. A.; Mijatović, S.; Maksimović-Ivanić, D.; Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo Pharmacol. Res. 105, 62-73, (2016) DOI: 10.1016/j.phrs.2016.01.011

Isoxanthohumol (IXN), a prenylated flavonoid from hops, exhibits diverse biological activities, e.g. antitumor, antiinflammatory, antioxidant and antiangiogenic. In this study, the effect of IXN is evaluated on two melanoma cell lines with dissimilar molecular background, B16 and A375. The treatment of both cell lines with IXN resulted in dose-dependent decrease of cell viability. Abolished viability was in correlation with changed morphology and loss of dividing potential indicating phenotypical alteration of both tested cell lines. While modified B16 cells underwent the process of non-classic differentiation followed by tyrosinase activity without enhancement of melanin content, inhibition of Notch 1, β-catenin and Oct-3/4 was observed in A375 cells indicating loss of their pluripotent characteristics. In parallel with this, distinct subpopulations in both cell cultures entered the process of programmed cell death—apoptosis in a caspase independent manner. The described changes in cultures upon exposure to IXN could be connected with the suppression of reactive oxygen (ROS) and nitrogen species (RNS) induced by the drug. Despite the differences in which IXN promoted modifications in the upper part of the PI3K/Akt and MEK-ERK signaling pathways between B16 and A375 cells, p70S6K and its target S6 protein in both types of melanoma cells, after transient activation, became inhibited. In addition to direct input of IXN on cell viability, this study for the first time shows that IXN strongly sensitizes melanoma cells to the treatment with paclitaxel in vivo, in concordance with data obtained in vitro on B16 cells as well as their highly invasive F10 subclone.
Publikation

Kaluđerović, G. N.; Krajnović, T.; Momčilović, M.; Stosic-Grujicic, S.; Mijatović, S.; Maksimović-Ivanić, D.; Hey-Hawkins, E.; Ruthenium(II) p-cymene complex bearing 2,2′-dipyridylamine targets caspase 3 deficient MCF-7 breast cancer cells without disruption of antitumor immune response J. Inorg. Biochem. 153, 315-321, (2015) DOI: 10.1016/j.jinorgbio.2015.09.006

[Ru(η6-p-cym)Cl{dpa(CH2)4COOEt}][PF6] (cym = cymene; dpa = 2,2′-dipyridylamine; complex 2) was prepared and characterized by elemental analysis, IR and multinuclear NMR spectroscopy, as well as ESI-MS and X-ray structural analysis. The structural analog without a side chain [Ru(η6-p-cym)Cl(dpa)][PF6] (1) as well as 2 were investigated in vitro against 518A2, SW480, 8505C, A253 and MCF-7 cell lines. Complex 1 is active against all investigated tumor cell lines while the activity of compound 2 is limited only to caspase 3 deficient MCF-7 breast cancer cells, however, both are less active than cisplatin. As CD4+ Th cells are necessary to trigger all the immune effector mechanisms required to eliminate tumor cells, besides testing the in vitro antitumor activity of 1 and 2, the effect of ruthenium(II) complexes on the cells of the adaptive immune system have also been evaluated. Importantly, complex 1 applied in concentrations which were effective against tumor cells did not affect immune cell viability, nor did exert a general immunosuppressive effect on cytokine production. Thus, beneficial characteristics of 1 might contribute to the overall therapeutic properties of the complex.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search