zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 5 von 5.

Publikation

Zoufal, V.; Mairinger, S.; Krohn, M.; Wanek, T.; Filip, T.; Sauberer, M.; Stanek, J.; Kuntner, C.; Pahnke, J.; Langer, O.; Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography J. Cereb. Blood Flow Metab. 40, 954-965, (2020) DOI: 10.1177/0271678X19854541

Previous data suggest a possible link between multidrug resistance-associated protein 1 (ABCC1) and brain clearance of beta-amyloid (Aβ). We used PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) to measure cerebral ABCC1 transport activity in a beta-amyloidosis mouse model (APP/PS1-21) and in wild-type mice aged 50 and 170 days, without and with pretreatment with the ABCC1 inhibitor MK571. One hundred seventy days-old-animals additionally underwent [11C]PiB PET scans to measure Aβ load. While baseline [11C]BMP PET scans detected no differences in the elimination slope of radioactivity washout from the brain (kelim) between APP/PS1-21 and wild-type mice of both age groups, PET scans after MK571 pretreatment revealed significantly higher kelim values in APP/PS1-21 mice than in wild-type mice aged 170 days, suggesting increased ABCC1 activity. The observed increase in kelim occurred across all investigated brain regions and was independent of the presence of Aβ plaques measured with [11C]PiB. Western blot analysis revealed a trend towards increased whole brain ABCC1 levels in 170 days-old-APP/PS1-21 mice versus wild-type mice and a significant positive correlation between ABCC1 levels and kelim. Our data point to an upregulation of ABCC1 in APP/PS1-21 mice, which may be related to an induction of ABCC1 in astrocytes as a protective mechanism against oxidative stress.
Publikation

Zoufal, V.; Mairinger, S.; Brackhan, M.; Krohn, M.; Filip, T.; Sauberer, M.; Stanek, J.; Wanek, T.; Tournier, N.; Bauer, M.; Pahnke, J.; Langer, O.; Imaging P-Glycoprotein Induction at the Blood–Brain Barrier of a β-Amyloidosis Mouse Model with 11C-Metoclopramide PET J. Nucl. Med. 61, 1050-1057, (2020) DOI: 10.2967/jnumed.119.237198

P-glycoprotein (ABC subfamily B member 1, ABCB1) plays an important role at the blood-brain barrier (BBB) in promoting clearance of neurotoxic β-amyloid (Aβ) peptides from the brain into the blood. ABCB1 expression and activity were found to be decreased in the brains of Alzheimer disease patients. Treatment with drugs that induce cerebral ABCB1 activity may be a promising approach to delay the build-up of Aβ deposits in the brain by enhancing clearance of Aβ peptides from the brain. The aim of this study was to investigate whether PET with the weak ABCB1 substrate radiotracer 11C-metoclopramide can measure ABCB1 induction at the BBB in a β-amyloidosis mouse model (APP/PS1-21 mice) and in wild-type mice. Methods: Groups of wild-type and APP/PS1-21 mice aged 50 or 170 d underwent 11C-metoclopramide baseline PET scans or scans after intraperitoneal treatment with the rodent pregnane X receptor activator 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN, 25 mg/kg) or its vehicle over 7 d. At the end of the PET scans, brains were harvested for immunohistochemical analysis of ABCB1 and Aβ levels. In separate groups of mice, radiolabeled metabolites of 11C-metoclopramide were determined in plasma and brain at 15 min after radiotracer injection. As an outcome parameter of cerebral ABCB1 activity, the elimination slope of radioactivity washout from the brain (k E,brain) was calculated. Results: PCN treatment resulted in an increased clearance of radioactivity from the brain as reflected by significant increases in k E,brain (from +26% to +54% relative to baseline). Immunohistochemical analysis confirmed ABCB1 induction in the brains of PCN-treated APP/PS1-21 mice with a concomitant decrease in Aβ levels. There was a significant positive correlation between k E,brain and ABCB1 levels in the brain. In wild-type mice, a significant age-related decrease in k E,brain was found. Metabolite analysis showed that most radioactivity in the brain comprised unmetabolized 11C-metoclopramide in all animal groups. Conclusion: 11C-metoclopramide can measure ABCB1 induction in the mouse brain without the need to consider an arterial input function and may find potential application in Alzheimer disease patients to noninvasively evaluate strategies to enhance the clearance properties of the BBB.
Publikation

Zoufal, V.; Wanek, T.; Krohn, M.; Mairinger, S.; Filip, T.; Sauberer, M.; Stanek, J.; Pekar, T.; Bauer, M.; Pahnke, J.; Langer, O.; Age dependency of cerebral P-glycoprotein function in wild-type and APPPS1 mice measured with PET J. Cereb. Blood Flow Metab. 40, 150-162, (2020) DOI: 10.1177/0271678X18806640

P-glycoprotein (P-gp, ABCB1) is an efflux transporter at the blood–brain barrier (BBB), which mediates clearance of beta-amyloid (Aβ) from brain into blood. We used (R)-[11C]verapamil PET in combination with partial P-gp inhibition with tariquidar to measure cerebral P-gp function in a beta-amyloidosis mouse model (APPtg) and in control mice at three different ages (50, 200 and 380 days). Following tariquidar pre-treatment (4 mg/kg), whole brain-to-plasma radioactivity concentration ratios (Kp,brain) were significantly higher in APPtg than in wild-type mice aged 50 days, pointing to decreased cerebral P-gp function. Moreover, we found an age-dependent decrease in cerebral P-gp function in both wild-type and APPtg mice of up to −50%. Alterations in P-gp function were more pronounced in Aβ-rich brain regions (hippocampus, cortex) than in a control region with negligible Aβ load (cerebellum). PET results were confirmed by immunohistochemical staining of P-gp in brain microvessels. Our results confirm previous findings of reduced P-gp function in Alzheimer’s disease mouse models and show that our PET protocol possesses adequate sensitivity to measure these functional changes in vivo. Our PET protocol may find use in clinical studies to test the efficacy of drugs to induce P-gp function at the human BBB to enhance Aβ clearance.
Publikation

Zoufal, V.; Mairinger, S.; Krohn, M.; Wanek, T.; Filip, T.; Sauberer, M.; Stanek, J.; Traxl, A.; Schuetz, J. D.; Kuntner, C.; Pahnke, J.; Langer, O.; Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[11C]Methylpurine in Mice Mol. Imaging Biol. 21, 306-316, (2019) DOI: 10.1007/s11307-018-1230-y

PurposeMultidrug resistance-associated proteins (MRPs) mediate the hepatobiliary and renal excretion of many drugs and drug conjugates. The positron emission tomography (PET) tracer 6-bromo-7-[11C]methylpurine is rapidly converted in tissues by glutathione-S-transferases into its glutathione conjugate, and has been used to measure the activity of Abcc1 in the brain and the lungs of mice. Aim of this work was to investigate if the activity of MRPs in excretory organs can be measured with 6-bromo-7-[11C]methylpurine.ProceduresWe performed PET scans with 6-bromo-7-[11C]methylpurine in groups of wild-type, Abcc4(−/−) and Abcc1(−/−) mice, with and without pre-treatment with the prototypical MRP inhibitor MK571.Results6-Bromo-7-[11C]methylpurine-derived radioactivity predominantly underwent renal excretion. In blood, MK571 treatment led to a significant increase in the AUC and a decrease in the elimination rate constant of radioactivity (kelimination,blood). In the kidneys, there were significant decreases in the rate constant for radioactivity uptake from the blood (kuptake,kidney), kelimination,kidney, and the rate constant for tubular secretion of radioactivity (kurine). Experiments in Abcc4(−/−) mice indicated that Abcc4 contributed to renal excretion of 6-bromo-7-[11C]methylpurine-derived radioactivity.ConclusionsOur data suggest that 6-bromo-7-[11C]methylpurine may be useful to assess the activity of MRPs in the kidneys as well as in other organs (brain, lungs), although further work is needed to identify the MRP subtypes involved in the disposition of 6-bromo-7-[11C]methylpurine-derived radioactivity.
Publikation

Mairinger, S.; Zoufal, V.; Wanek, T.; Traxl, A.; Filip, T.; Sauberer, M.; Stanek, J.; Kuntner, C.; Pahnke, J.; Müller, M.; Langer, O.; Influence of breast cancer resistance protein and P-glycoprotein on tissue distribution and excretion of Ko143 assessed with PET imaging in mice Eur. J. Pharm. Sci. 115, 212-222, (2018) DOI: 10.1016/j.ejps.2018.01.034

Ko143 is a reference inhibitor of the adenosine triphosphate-binding cassette (ABC) transporter breast cancer resistance protein (humans: ABCG2, rodents: Abcg2) for in vitro and in vivo use. Previous in vitro data indicate that Ko143 binds specifically to ABCG2/Abcg2, suggesting a potential utility of Ko143 as a positron emission tomography (PET) tracer to assess the density (abundance) of ABCG2 in different tissues. In this work we radiolabeled Ko143 with carbon-11 (11C) and performed small-animal PET experiments with [11C]Ko143 in wild-type, Abcg2(−/−), Abcb1a/b(−/−) and Abcb1a/b(−/−)Abcg2(−/−) mice to assess the influence of Abcg2 and Abcb1a/b on tissue distribution and excretion of [11C]Ko143.[11C]Ko143 was extensively metabolized in vivo and unidentified radiolabeled metabolites were found in all investigated tissues. We detected no significant differences between wild-type and Abcg2(−/−) mice in the distribution of [11C]Ko143-derived radioactivity to Abcg2-expressing organs (brain, liver and kidney). [11C]Ko143 and possibly its radiolabeled metabolites were transported by Abcb1a and not by Abcg2 at the mouse blood-brain barrier. [11C]Ko143-derived radioactivity underwent both hepatobiliary and urinary excretion, with Abcg2 playing a possible role in mediating the transport of radiolabeled metabolites of [11C]Ko143 from the kidney into urine. Experiments in which a pharmacologic dose of unlabeled Ko143 (10 mg/kg) was co-administered with [11C]Ko143 revealed pronounced effects of the vehicle used for Ko143 formulation (containing polyethylene glycol 300 and polysorbate 80) on radioactivity distribution to the brain and the liver, as well as on hepatobiliary and urinary excretion of radioactivity.Our results highlight the challenges associated with the development of PET tracers for ABC transporters and emphasize that inhibitory effects of pharmaceutical excipients on membrane transporters need to be considered when performing in vivo drug-drug interaction studies. Finally, our study illustrates the power of small-animal PET to assess the interaction of drug molecules with membrane transporters on a whole body level.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search