zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Chantseva, V.; Bilova, T.; Smolikova, G.; Frolov, A.; Medvedev, S.; 3D-clinorotation induces specific alterations in metabolite profiles of germinating Brassica napus L. seeds Biol. Commun. 64, 55-74, (2019) DOI: 10.21638/spbu03.2019.107

During the whole history of their life on Earth, higher plants evolved under the constant gravity stimulus. Therefore, plants developed efficient mechanisms of gravity perception, underlying their ability to adjust the direction of growth to the gravity vector, i.e. the phenomenon of gravitropism. In this context, alterations in the magnitude and vector of the gravity field might compromise plant growth and development. This aspect was successfully addressed in gravity fields of low intensity (microgravity). On the other hand, microgravity can be simulated on the Earth by clinorotation, i.e. rotation of the experimental plant along one or several axes. This approach is routinely used for studies of gravity-related responses of crop plants, although the effect of simulated microgravity on the most sensitive ontogenetic stages — germination and seedling development — is still not sufficiently characterized. Recently, we addressed the effects of clinorotation on the proteome of germinating oilseed rape (Brassica napus) seeds. Here we extend this study to the seedling primary metabolome and address its changes in the presence of 3D-clinorotation. GC-MS analysis revealed essential alterations in patterns of sugars and sugar phosphates (specifically glucose-6-phosphate), methionine and glycerol. Thereby, abundances of individual metabolites showed high dispersion, indicating high lability and plasticity of the seedling metabolome.
Bücher und Buchkapitel

Osmolovskaya, N.; Shumilina, J.; Bureiko, K.; Chantseva, V.; Bilova, T.; Kuchaeva, L.; Laman, N.; Wessjohann, L. A.; Frolov, A.; Ion Homeostasis Response to Nutrient-Deficiency Stress in Plants (Vikas, B. & Fasullo, M., eds.). 1-23, (2019) ISBN: 978-1-78985-311-7 DOI: 10.5772/intechopen.89398

A crucial feature of plant performance is its strong dependence on the availability of essential mineral nutrients, affecting multiple vital functions. Indeed, mineral-nutrient deficiency is one of the major stress factors affecting plant growth and development. Thereby, nitrogen and potassium represent the most abundant mineral contributors, critical for plant survival. While studying plant responses to nutrient deficiency, one should keep in mind that mineral nutrients, along with their specific metabolic roles, are directly involved in maintaining cell ion homeostasis, which relies on a finely tuned equilibrium between cytosolic and vacuolar ion pools. Therefore, in this chapter we briefly summarize the role of the ion homeostasis system in cell responses to environmental deficiency of nitrate and potassium ions. Special attention is paid to the implementation of plant responses via NO3− and K+ root transport and regulation of ion distribution in cell compartments. These responses are strongly dependent on plant species, as well as severity and duration of nutrient deficiency.
Publikation

Frolov, A.; Mamontova, T.; Ihling, C.; Lukasheva, E.; Bankin, M.; Chantseva, V.; Vikhnina, M.; Soboleva, A.; Shumilina, J.; Mavropolo-Stolyarenko, G.; Grishina, T.; Osmolovskaya, N.; Zhukov, V.; Hoehenwarter, W.; Sinz, A.; Tikhononovich, I.; Wessjohann, L.; Bilova, T.; Smolikova, G.; Medvedev, S.; Mining seed proteome: from protein dynamics to modification profiles Biol. Commun. 63, 43-58, (2018) DOI: 10.21638/spbu03.2018.106

In the modern world, crop plants represent a major source of daily consumed foods. Among them, cereals and legumes — i.e. the crops accumulating oils, carbohydrates and proteins in their seeds — dominate in European agriculture, tremendously impacting global protein consumption and biodiesel production. Therefore, the seeds of crop plants attract the special attention of biologists, biochemists, nutritional physiologists and food chemists. Seed development and germination, as well as age- and stress-related changes in their viability and nutritional properties, can be addressed by a variety of physiological and biochemical methods. In this context, the methods of functional genomics can be applied to address characteristic changes in seed metabolism, which can give access to stress-resistant genotypes. Among these methods, proteomics is one of the most effective tools, allowing mining metabolism changes on the protein level. Here we discuss the main methodological approaches of seed proteomics in the context of physiological changes related to environmental stress and ageing. We provide a comprehensive comparison of gel- and chromatographybased approaches with a special emphasis on advantages and disadvantages of both strategies in characterization of the seed proteome.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search