zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Pantelić, N. ?.; Božić, B.; Zmejkovski, B. B.; Banjac, N. R.; Dojčinović, B.; Wessjohann, L. A.; Kaluđerović, G. N.; In Vitro Evaluation of Antiproliferative Properties of Novel Organotin(IV) Carboxylate Compounds with Propanoic Acid Derivatives on a Panel of Human Cancer Cell Lines Molecules 26, 3199, (2021) DOI: 10.3390/molecules26113199

The synthesis of novel triphenyltin(IV) compounds, Ph3SnLn (n = 1–3), with oxaprozin (3-(4,5-diphenyloxazol-2-yl)propanoic acid), HL1, and the new propanoic acid derivatives 3-(4,5-bis(4-methoxylphenyl)oxazol-2-yl)propanoic acid, HL2, and 3-(2,5-dioxo-4,4-diphenylimidazolidin-1-yl)propanoic acid, HL3, has been performed. The ligands represent commercial drugs or their derivatives and the tin complexes have been characterized by standard analytical methods. The in vitro antiproliferative activity of both ligands and organotin(IV) compounds has been evaluated on the following tumour cell lines: human prostate cancer (PC-3), human colorectal adenocarcinoma (HT-29), breast cancer (MCF-7), and hepatocellular cancer (HepG2), as well as on normal mouse embryonic fibroblast cells (NIH3T3) with the aid of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. Contrary to the inactive ligand precursors, all organotin(IV) carboxylates showed very good activity with IC50 values ranging from 0.100 to 0.758 µM. According to the CV assay (IC50 = 0.218 ± 0.025 µM), complex Ph3SnL1 demonstrated the highest cytotoxicity against the caspase 3 deficient MCF-7 cell line. Inductively coupled plasma mass spectrometry (ICP-MS) analysis indicated a two-fold lower concentration of tin in MCF-7 cells in comparison to platinum. To investigate the mechanism of action of the compound Ph3SnL1 on MCF-7 cells, morphological, autophagy and cell cycle analysis, as well as the activation of caspase and ROS/RNS and NO production, has been performed. Results suggest that Ph3SnL1 induces caspase-independent apoptosis in MCF-7 cells.
Publikation

Drača, D.; Edeler, D.; Saoud, M.; Dojčinović, B.; Dunđerović, D.; Đmura, G.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G. N.; Antitumor potential of cisplatin loaded into SBA-15 mesoporous silica nanoparticles against B16F1 melanoma cells: in vitro and in vivo studies J. Inorg. Biochem. 217, 111383, (2021) DOI: 10.1016/j.jinorgbio.2021.111383

CP (cisplatin) and mesoporous silica SBA-15 (Santa Barbara amorphous 15) loaded with CP (→SBA-15|CP) were tested in vitro and in vivo against low metastatic mouse melanoma B16F1 cell line. SBA-15 only, as drug carrier, is found to be not active, while CP and SBA-15|CP revealed high cytotoxicity in lower μM range. The activity of SBA-15|CP was found similar to the activity of CP alone. Both CP and SBA-15|CP induced inhibition of cell proliferation (carboxyfluorescein succinimidyl ester - CFSE assay) along with G2/M arrest (4′,6-diamidino-2-phenylindole - DAPI assay). Apoptosis (Annexin V/ propidium iodide - PI assay), through caspase activation (apostat assay) and nitric oxide (NO) production (diacetate(4-amino-5-methylamino-2′,7′-difluorofluorescein-diacetat) - DAF FM assay), was identified as main mode of cell death. However, slight elevated autophagy (acridine orange - AO assay) was detected in treated B16F1 cells. CP and SBA-15|CP did not affect production of ROS (reactive oxygen species) in B16F1 cells. Both SBA-15|CP and CP induced in B16F1 G2 arrest and subsequent senescence. SBA-15|CP, but not CP, blocked the growth of melanoma in C57BL/6 mice. Moreover, hepato- and nephrotoxicity in SBA-15|CP treated animals were diminished in comparison to CP confirming multiply improved antitumor potential of immobilized CP. Outstandingly, SBA-15 boosted in vivo activity and diminished side effects of CP.
Publikation

Pantelić, N. ?.; Zmejkovski, B. B.; Božić, B.; Dojčinović, B.; Banjac, N. R.; Wessjohann, L. A.; Kaluđerović, G. N.; Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid J. Inorg. Biochem. 211, 111207, (2020) DOI: 10.1016/j.jinorgbio.2020.111207

Two novel triphenyltin(IV) compounds, [Ph3SnL1] (L1 = 2-(5-(4-fluorobenzylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (1)) and [Ph3SnL2] (L2 = 2-(5-(5-methyl-2-furfurylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (2)) were synthesized and characterized by FT-IR, (1H and 13C) NMR spectroscopy, mass spectrometry, and elemental microanalysis. The in vitro anticancer activity of the synthesized organotin(IV) compounds was determined against four tumor cell lines: PC-3 (prostate), HT-29 (colon), MCF-7 (breast), and HepG2 (hepatic) using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. The IC50 values are found to be in the range from 0.11 to 0.50 μM. Compound 1 exhibits the highest activity toward PC-3 cells (IC50 = 0.115 ± 0.009 μM; CV assay). The tin and platinum uptake in PC-3 cells showed a threefold lower uptake of tin in comparison to platinum (as cisplatin). Together with its higher activity this indicates a much higher cell inhibition potential of the tin compounds (calculated to ca. 50 to 100 times). Morphological analysis suggested that the compounds induce apoptosis in PC-3 cells, and flow cytometry analysis revealed that 1 and 2 induce autophagy as well as NO (nitric oxide) production.
Publikation

Pantelić, N.; Zmejkovski, B. B.; Kolundžija, B.; Crnogorac, M. ?.; Vujić, J. M.; Dojčinović, B.; Trifunović, S. R.; Stanojković, T. P.; Sabo, T. J.; Kaluđerović, G. N.; In vitro antitumor activity, metal uptake and reactivity with ascorbic acid and BSA of some gold(III) complexes with N,N′-ethylenediamine bidentate ester ligands J. Inorg. Biochem. 172, 55-66, (2017) DOI: 10.1016/j.jinorgbio.2017.04.001

Four novel gold(III) complexes of general formulae [AuCl2{(S,S)-R2eddl}]PF6 (R2eddl = O,O′-dialkyl-(S,S)-ethylenediamine-N,N′-di-2-(4-methyl)pentanoate, R = n-Pr, n-Bu, n-Pe, i-Bu; 1–4, respectively), were synthesized and characterized by elemental analysis, UV/Vis, IR, and NMR spectroscopy, as well as high resolution mass spectrometry. Density functional theory calculations pointed out that (R,R)-N,N′-configuration diastereoisomers were energetically the most favorable. Duo to high cytotoxic activity complex 3 was chosen for stability study in DMSO, no decomposition occurs within 24 h, and for the reaction with ascorbic acid in which was reduced immediately. Additionally, 3 interacts with bovine serum albumin (BSA) as proven by UV/Vis spectroscopy. In vitro antitumor activity was determined against human cervix adenocarcinoma (HeLa), human myelogenous leukemia (K562), and human melanoma (Fem-x) cancer cell lines, as well as against non-cancerous human embryonic lung fibroblast cells MRC-5. The highest activity was observed against K562 cells (IC50: 5.04–6.51 μM). Selectivity indices showed that these complexes are less toxic than cisplatin. 3 had a similar viability kinetics on HeLa cells as cisplatin. Drug accumulation studies in HeLa cells showed that the total gold uptake increased much faster than that of cisplatin pointing out that 3 more efficiently enters the cells than cisplatin. Furthermore, morphological and cell cycle analysis reveal that gold(III) complexes induced apoptosis in time- and dose-dependent manner.
Publikation

Bensing, C.; Mojić, M.; Gómez-Ruiz, S.; Carralero, S.; Dojčinović, B.; Maksimović-Ivanić, D.; Mijatović, S.; Kaluđerović, G. N.; Evaluation of functionalized mesoporous silica SBA-15 as a carrier system for Ph3Sn(CH2)3OH against the A2780 ovarian carcinoma cell line Dalton Trans. 45, 18984-18993, (2016) DOI: 10.1039/C6DT03519A

SBA-15|Sn3, a mesoporous silica-based material (derivative of SBA-15) loaded with an organotin compound Ph3Sn(CH2)3OH (Sn3), possesses improved antitumor potential against the A2780 high-grade serous ovarian carcinoma cell line in comparison to Sn3. It is demonstrated that both the compound and the nanostructured material are internalized by the A2780 cells. A similar mode of action of Sn3 and SBA-15|Sn3 against the A2780 cell line was found. Explicitly, induction of apoptosis, caspase 2, 3, 8 and 9 activation, accumulation of cells in the hypodiploid phase as well as accumulation of ROS were observed. Interestingly, Sn3 loaded in the mesoporous silica-based material needed to reach a concentration 3.5 times lower than the IC50 value of the Sn3 compound, pointing out a higher effect of the SBA-15|Sn3 than Sn3 alone. Clonogenic potential, growth in 3D culture as well as mobility of cells were disturbed in the presence of SBA-15|Sn3. Such behavior could be associated with the suppression of p-38 MAPK. Less profound effect of Sn3 compared to SBA-15|Sn3 could be attributed to a different regulation of p-38 and STAT-3, which are mainly responsible for an appropriate cellular response to diverse stimuli or metastatic properties.
Publikation

Edeler, D.; Kaluđerović, M. R.; Dojčinović, B.; Schmidt, H.; Kaluđerović, G. N.; SBA-15 mesoporous silica particles loaded with cisplatin induce senescence in B16F10 cells RSC Adv. 6, 111031-111040, (2016) DOI: 10.1039/C6RA22596A

The anticancer drug cisplatin (CP) is loaded into SBA-15 mesoporous silica (SBA-15|CP) and its release from the nanomaterial is studied. The CP-loaded SBA-15 is tested against four tumor cell lines: mouse malignant melanoma B16F10, human adenocarcinoma HeLa, colon HT-29 and prostate PC3. Most importantly, the superiority of this novel material in comparison to CP arises from the fact that the CP-grafted nanomaterial SBA-15 (→SBA-15|CP) is enhancing cessation of proliferation along with induction of senescence in B16F10 in approximately 3.5 times lower concentration. The control material loaded with therapeutically inactive K2[PtCl4] (→SBA-15|TC) showed no antitumor activity. To a large extent, SBA-15|CP-induced senescence might present a safe approach in tumor treatment. Such cells can be cleared by immune cells resulting in efficient tumor regression. So far only apoptotic agents are being exploited in clinics, thus an understanding of the chemotherapeutic-induced senescence will allow oncologists to explore this essential tumor suppressor mechanism.

Diese Seite wurde zuletzt am 11.02.2013 geändert.

IPB Mainnav Search