zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Landtag, J.; Baumert, A.; Degenkolb, T.; Schmidt, J.; Wray, V.; Scheel, D.; Strack, D.; Rosahl, S.; Accumulation of tyrosol glucoside in transgenic potato plants expressing a parsley tyrosine decarboxylase Phytochemistry 60, 683-689, (2002) DOI: 10.1016/S0031-9422(02)00161-9

As part of the response to pathogen infection, potato plants accumulate soluble and cell wall-bound phenolics such as hydroxycinnamic acid tyramine amides. Since incorporation of these compounds into the cell wall leads to a fortified barrier against pathogens, raising the amounts of hydroxycinnamic acid tyramine amides might positively affect the resistance response. To this end, we set out to increase the amount of tyramine, one of the substrates of the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction, by placing a cDNA encoding a pathogen-induced tyrosine decarboxylase from parsley under the control of the 35S promoter and introducing the construct into potato plants via Agrobacterium tumefaciens-mediated transformation. While no alterations were observed in the pattern and quantity of cell wall-bound phenolic compounds in transgenic plants, the soluble fraction contained several new compounds. The major one was isolated and identified as tyrosol glucoside by liquid chromatography–electrospray ionization–high resolution mass spectrometry and NMR analyses. Our results indicate that expression of a tyrosine decarboxylase in potato does not channel tyramine into the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction but rather unexpectedly, into a different pathway leading to the formation of a potential storage compound.Expression of a parsley tyrosine decarboxylase in potato unexpectedly channels tyramine into a pathway leading to the formation of tyrosol glucoside.
Publikation

Schliemann, W.; Cai, Y.; Degenkolb, T.; Schmidt, J.; Corke, H.; Betalains of Celosia argentea Phytochemistry 58, 159-165, (2001) DOI: 10.1016/S0031-9422(01)00141-8

The betalains of yellow, orange and red inflorescences of common cockscomb (Celosia argentea var. cristata) were compared and proved to be qualitatively identical to those of feathered amaranth (Celosia argentea var. plumosa). In addition to the known compounds amaranthin and betalamic acid, the structures of three yellow pigments were elucidated to be immonium conjugates of betalamic acid with dopamine, 3-methoxytyramine and (S)-tryptophan by various spectroscopic techniques and comparison to synthesized reference compounds; the latter two are new to plants. Among the betacyanins occurring in yellow inflorescences in trace amounts, the presence of 2-descarboxy-betanidin, a dopamine-derived betacyanin, has been ascertained. The detection of high dopamine concentration may be of toxicological relevance in use of yellow inflorescences as a vegetable and in traditional Chinese medicine, common uses for the red inflorescences of common cockscomb.The betaxanthins of two Celosia argentea varieties were identified as betalamic acid conjugates of dopamine (1), 3-methoxytyramine (2) and (S)-tryptophan.
IPB Mainnav Search