@Article{IPB-1218, author = {Jayaweera, T. and Siriwardana, C. and Dharmasiri, S. and Quint, M. and Gray, W. M. and Dharmasiri, N. and}, title = {{Alternative Splicing of Arabidopsis IBR5 Pre-mRNA Generates Two IBR5 Isoforms with Distinct and Overlapping Functions}}, year = {2014}, pages = {e102301}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0102301}, volume = {9}, abstract = {The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCFTIR1/AFBs auxin signaling pathways.} } @Article{IPB-1213, author = {Grubb, C. D. and Zipp, B. J. and Kopycki, J. and Schubert, M. and Quint, M. and Lim, E.-K. and Bowles, D. J. and Pedras, M. S. C. and Abel, S. and}, title = {{Comparative analysis of Arabidopsis UGT74 glucosyltransferases reveals a special role of UGT74C1 in glucosinolate biosynthesis}}, year = {2014}, pages = {92-105}, journal = {Plant J.}, doi = {10.1111/tpj.12541}, volume = {79}, abstract = {The study of glucosinolates and their regulation has provided a powerful framework for the exploration of fundamental questions about the function, evolution, and ecological significance of plant natural products, but uncertainties about their metabolism remain. Previous work has identified one thiohydroximate S‐glucosyltransferase, UGT74B1, with an important role in the core pathway, but also made clear that this enzyme functions redundantly and cannot be the sole UDP‐glucose dependent glucosyltransferase (UGT) in glucosinolate synthesis. Here, we present the results of a nearly comprehensive in vitro activity screen of recombinant Arabidopsis Family 1 UGTs, which implicate other members of the UGT74 clade as candidate glucosinolate biosynthetic enzymes. Systematic genetic analysis of this clade indicates that UGT74C1 plays a special role in the synthesis of aliphatic glucosinolates, a conclusion strongly supported by phylogenetic and gene expression analyses. Finally, the ability of UGT74C1 to complement phenotypes and chemotypes of the ugt74b1‐2 knockout mutant and to express thiohydroximate UGT activity in planta provides conclusive evidence for UGT74C1 being an accessory enzyme in glucosinolate biosynthesis with a potential function during plant adaptation to environmental challenge.} } @Article{IPB-1207, author = {Flores, R. and Gago-Zachert, S. and Serra, P. and Sanjuán, R. and Elena, S. F. and}, title = {{Viroids: Survivors from the RNA World?}}, year = {2014}, pages = {395-414}, journal = {Annu. Rev. Microbiol.}, doi = {10.1146/annurev-micro-091313-103416}, volume = {68}, abstract = {Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario—the so-called RNA world—existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G \+ C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.} } @Article{IPB-1206, author = {Floková, K. and Tarkowská, D. and Miersch, O. and Strnad, M. and Wasternack, C. and Novák, O. and}, title = {{UHPLC–MS/MS based target profiling of stress-induced phytohormones}}, year = {2014}, pages = {147-157}, journal = {Phytochemistry}, doi = {10.1016/j.phytochem.2014.05.015}, volume = {105}, abstract = {Stress-induced changes in phytohormone metabolite profiles have rapid effects on plant metabolic activity and growth. The jasmonates (JAs) are a group of fatty acid-derived stress response regulators with roles in numerous developmental processes. To elucidate their dual regulatory effects, which overlap with those of other important defence-signalling plant hormones such as salicylic acid (SA), abscisic acid (ABA) and indole-3-acetic acid (IAA), we have developed a highly efficient single-step clean-up procedure for their enrichment from complex plant matrices that enables their sensitive quantitative analysis using hyphenated mass spectrometry technique. The rapid extraction of minute quantities of plant material (less than 20 mg fresh weight, FW) into cold 10% methanol followed by one-step reversed-phase polymer-based solid phase extraction significantly reduced matrix effects and increased the recovery of labile JA analytes. This extraction and purification protocol was paired with a highly sensitive and validated ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method and used to simultaneously profile sixteen stress-induced phytohormones in minute plant material samples, including endogenous JA, several of its biosynthetic precursors and derivatives, as well as SA, ABA and IAA.} } @Article{IPB-1205, author = {Farmer, E. E. and Gasperini, D. and Acosta, I. F. and}, title = {{The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding}}, year = {2014}, pages = {282-288}, journal = {New Phytol.}, doi = {10.1111/nph.12897}, volume = {204}, abstract = {Jasmonates are lipid mediators that control defence gene expression in response to wounding and other environmental stresses. These small molecules can accumulate at distances up to several cm from sites of damage and this is likely to involve cell‐to‐cell jasmonate transport. Also, and independently of jasmonate synthesis, transport and perception, different long‐distance wound signals that stimulate distal jasmonate synthesis are propagated at apparent speeds of several cm min–1 to tissues distal to wounds in a mechanism that involves clade 3 GLUTAMATE RECEPTOR‐LIKE (GLR) genes. A search for jasmonate synthesis enzymes that might decode these signals revealed LOX6, a lipoxygenase that is necessary for much of the rapid accumulation of jasmonic acid at sites distal to wounds. Intriguingly, the LOX6 promoter is expressed in a distinct niche of cells that are adjacent to mature xylem vessels, a location that would make these contact cells sensitive to the release of xylem water column tension upon wounding. We propose a model in which rapid axial changes in xylem hydrostatic pressure caused by wounding travel through the vasculature and lead to slower, radially dispersed pressure changes that act in a clade 3 GLR‐dependent mechanism to promote distal jasmonate synthesis.} } @Article{IPB-1199, author = {Erickson, J. L. and Ziegler, J. and Guevara, D. and Abel, S. and Klösgen, R. B. and Mathur, J. and Rothstein, S. J. and Schattat, M. H. and}, title = {{Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays}}, year = {2014}, pages = {127}, journal = {BMC Plant Biol.}, doi = {10.1186/1471-2229-14-127}, volume = {14}, abstract = {BackgroundAgrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes.ResultsUsing a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation.ConclusionAlthough we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy.} } @Article{IPB-1193, author = {Delker, C. and Sonntag, L. and James, G. and Janitza, P. and Ibañez, C. and Ziermann, H. and Peterson, T. and Denk, K. and Mull, S. and Ziegler, J. and Davis, S. and Schneeberger, K. and Quint, M. and}, title = {{The DET1-COP1-HY5 Pathway Constitutes a Multipurpose Signaling Module Regulating Plant Photomorphogenesis and Thermomorphogenesis}}, year = {2014}, pages = {1983-1989}, journal = {Cell Rep.}, doi = {10.1016/j.celrep.2014.11.043}, volume = {9}, abstract = {Developmental plasticity enables plants to respond to elevated ambient temperatures by adapting their shoot architecture. On the cellular level, the basic-helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) coordinates this response by activating hormonal modules that in turn regulate growth. In addition to an unknown temperature-sensing mechanism, it is currently not understood how temperature regulates PIF4 activity. Using a forward genetic approach in Arabidopsis thaliana, we present extensive genetic evidence demonstrating that the DE-ETIOLATED 1 (DET1)-CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1)-ELONGATED HYPOCOTYL 5 (HY5)-dependent photomorphogenesis pathway transcriptionally regulates PIF4 to coordinate seedling growth in response to elevated temperature. Our findings demonstrate that two of the most prevalent environmental cues, light and temperature, share a much larger set of signaling components than previously assumed. Similar to the toolbox concept in animal embryonic patterning, multipurpose signaling modules might have evolved in plants to translate various environmental stimuli into adaptational growth processes.} } @Article{IPB-1187, author = {Budiharjo, A. and Chowdhury, S. P. and Dietel, K. and Beator, B. and Dolgova, O. and Fan, B. and Bleiss, W. and Ziegler, J. and Schmid, M. and Hartmann, A. and Borriss, R. and}, title = {{Transposon Mutagenesis of the Plant-Associated Bacillus amyloliquefaciens ssp. plantarum FZB42 Revealed That the nfrA and RBAM17410 Genes Are Involved in Plant-Microbe-Interactions}}, year = {2014}, pages = {e98267}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0098267}, volume = {9}, abstract = {Bacillus amyloliquefaciens ssp. plantarum FZB42 represents the prototype of Gram-positive plant growth promoting and biocontrol bacteria. In this study, we applied transposon mutagenesis to generate a transposon library, which was screened for genes involved in multicellular behavior and biofilm formation on roots as a prerequisite of plant growth promoting activity. Transposon insertion sites were determined by rescue-cloning followed by DNA sequencing. As in B. subtilis, the global transcriptional regulator DegU was identified as an activator of genes necessary for swarming and biofilm formation, and the DegU-mutant of FZB42 was found impaired in efficient root colonization. Direct screening of 3,000 transposon insertion mutants for plant-growth-promotion revealed the gene products of nfrA and RBAM\_017140 to be essential for beneficial effects exerted by FZB42 on plants. We analyzed the performance of GFP-labeled wild-type and transposon mutants in the colonization of lettuce roots using confocal laser scanning microscopy. While the wild-type strain heavily colonized root surfaces, the nfrA mutant did not colonize lettuce roots, although it was not impaired in growth in laboratory cultures, biofilm formation and swarming motility on agar plates. The RBAM17410 gene, occurring in only a few members of the B. subtilis species complex, was directly involved in plant growth promotion. None of the mutant strains were affected in producing the plant growth hormone auxin. We hypothesize that the nfrA gene product is essential for overcoming the stress caused by plant response towards bacterial root colonization.} } @Article{IPB-1181, author = {Bosch, M. and Wright, L. P. and Gershenzon, J. and Wasternack, C. and Hause, B. and Schaller, A. and Stintzi, A. and}, title = {{Jasmonic Acid and Its Precursor 12-Oxophytodienoic Acid Control Different Aspects of Constitutive and Induced Herbivore Defenses in Tomato}}, year = {2014}, pages = {396-410}, journal = {Plant Physiol.}, doi = {10.1104/pp.114.237388}, volume = {166}, abstract = {The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.} } @Article{IPB-1175, author = {Antolín-Llovera, M. and Petutsching, E. K. and Ried, M. K. and Lipka, V. and Nürnberger, T. and Robatzek, S. and Parniske, M. and}, title = {{Knowing your friends and foes - plant receptor-like kinases as initiators of symbiosis or defence}}, year = {2014}, pages = {791-802}, journal = {New Phytol.}, doi = {10.1111/nph.13117}, volume = {204}, abstract = {The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane‐localized receptor complexes. A critical step in their activation is ligand‐induced homo‐ or hetero‐oligomerization of leucine‐rich repeat (LRR)‐ and/or lysin motif (LysM) receptor‐like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen‐associated molecular patterns (PAMPs), including the bacterial flagellin‐derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont‐derived (lipo)‐chitooligosaccharides. The structurally related chitin‐oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM‐RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin‐like domain (MLD)‐LRR‐RLK Symbiosis Receptor‐like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR‐ and LysM‐mediated signalling, the involvement of MLD‐LRR‐RLKs in symbiosis and defence, and the role of endocytosis in RLK function.} } @Article{IPB-1174, author = {Antolín-Llovera, M. and Ried, M. K. and Parniske, M. and}, title = {{Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE Ectodomain Promotes Complex Formation with Nod Factor Receptor 5}}, year = {2014}, pages = {422-427}, journal = {Curr. Biol.}, doi = {10.1016/j.cub.2013.12.053}, volume = {24}, abstract = {Plants form root symbioses with fungi and bacteria to improve their nutrient supply. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for phosphate-acquiring arbuscular mycorrhiza, as well as for the nitrogen-fixing root nodule symbiosis of legumes [1] and actinorhizal plants [2, 3], but its precise function was completely unclear. Here we show that the extracytoplasmic region of SYMRK, which comprises three leucine-rich repeats (LRRs) and a malectin-like domain (MLD) related to a carbohydrate-binding protein from Xenopus laevis [4], is cleaved to release the MLD in the absence of symbiotic stimulation. A conserved sequence motif—GDPC—that connects the MLD to the LRRs is required for MLD release. We discovered that Nod factor receptor 5 (NFR5) [5, 6, 7, 8] forms a complex with the SYMRK version that remains after MLD release (SYMRK-ΔMLD). SYMRK-ΔMLD outcompeted full-length SYMRK for NFR5 interaction, indicating that the MLD negatively interferes with complex formation. SYMRK-ΔMLD is present at lower amounts than MLD, suggesting rapid degradation after MLD release. A deletion of the entire extracytoplasmic region increased protein abundance, suggesting that the LRR region promotes degradation. Curiously, this deletion led to excessive infection thread formation, highlighting the importance of fine-tuned regulation of SYMRK by its ectodomain.} } @Article{IPB-1246, author = {Ried, M. K. and Antolín-Llovera, M. and Parniske, M. and}, title = {{Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases}}, year = {2014}, pages = {e03891}, journal = {eLife}, doi = {10.7554/eLife.03891}, volume = {3}, abstract = {Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.} } @Article{IPB-1228, author = {Maldonado-Bonilla, L. D. and Eschen-Lippold, L. and Gago-Zachert, S. and Tabassum, N. and Bauer, N. and Scheel, D. and Lee, J. and}, title = {{The Arabidopsis Tandem Zinc Finger 9 Protein Binds RNA and Mediates Pathogen-Associated Molecular Pattern-Triggered Immune Responses}}, year = {2014}, pages = {412-425}, journal = {Plant Cell Physiol.}, doi = {10.1093/pcp/pct175}, volume = {55}, abstract = {Recognition of pathogen-associated molecular patterns (PAMPs) induces multiple defense mechanisms to limit pathogen growth. Here, we show that the Arabidopsis thaliana tandem zinc finger protein 9 (TZF9) is phosphorylated by PAMP-responsive mitogen-activated protein kinases (MAPKs) and is required to trigger a full PAMP-triggered immune response. Analysis of a tzf9 mutant revealed attenuation in specific PAMP-triggered reactions such as reactive oxygen species accumulation, MAPK activation and, partially, the expression of several PAMP-responsive genes. In accordance with these weaker PAMP-triggered responses, tzf9 mutant plants exhibit enhanced susceptibility to virulent Pseudomonas syringae pv. tomato DC3000. Visualization of TZF9 localization by fusion to green fluorescent protein revealed cytoplasmic foci that co-localize with marker proteins of processing bodies (P-bodies). This localization pattern is affected by inhibitor treatments that limit mRNA availability (such as cycloheximide or actinomycin D) or block nuclear export (leptomycin B). Coupled with its ability to bind the ribohomopolymers poly(rU) and poly(rG), these results suggest involvement of TZF9 in post-transcriptional regulation, such as mRNA processing or storage pathways, to regulate plant innate immunity.} } @Article{IPB-1275, author = {Ziegler, J. and Qwegwer, J. and Schubert, M. and Erickson, J. L. and Schattat, M. and Bürstenbinder, K. and Grubb, C. D. and Abel, S. and}, title = {{Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization}}, year = {2014}, pages = {102-109}, journal = {J. Chromatogr. A}, doi = {10.1016/j.chroma.2014.08.029}, volume = {1362}, abstract = {A strategy to detect and quantify the polar ethylene precursor 1-aminocyclopropan-1-carboxylic acid (ACC) along with the more apolar phytohormones abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), jasmonic acid-isoleucine conjugate (JA-Ile), 12-oxo-phytodienoic acid (OPDA), trans-zeatin, and trans-zeatin 9-riboside using a single extraction is presented. Solid phase resins commonly employed for extraction of phytohormones do not allow the recovery of ACC. We circumvent this problem by attaching an apolar group to ACC via derivatization with the amino group specific reagent 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Derivatization in the methanolic crude extract does not modify other phytohormones. The derivatized ACC could be purified and detected together with the more apolar phytohormones using common solid phase extraction resins and reverse phase HPLC/electrospray negative ion tandem mass spectrometry. The limit of detection was in the low nanomolar range for all phytohormones, a sensitivity sufficient to accurately determine the phytohormone levels from less than 50 mg (fresh weight) of Arabidopsis thaliana and Nicotiana benthamiana tissues. Comparison with previously published phytohormone levels and the reported changes in phytohormone levels after stress treatments confirmed the accuracy of the method.} } @Article{IPB-1274, author = {Ziegler, J. and Abel, S. and}, title = {{Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization}}, year = {2014}, pages = {2799-2808}, journal = {Amino Acids}, doi = {10.1007/s00726-014-1837-5}, volume = {46}, abstract = {A new method for the determination of amino acids is presented. It combines established methods for the derivatization of primary and secondary amino groups with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) with the subsequent amino acid specific detection of the derivatives by LC–ESI–MS/MS using multiple reaction monitoring (MRM). The derivatization proceeds within 5 min, and the resulting amino acid derivatives can be rapidly purified from matrix by solid-phase extraction (SPE) on HR-X resin and separated by reversed-phase HPLC. The Fmoc derivatives yield several amino acid specific fragment ions which opened the possibility to select amino acid specific MRM transitions. The method was applied to all 20 proteinogenic amino acids, and the quantification was performed using l-norvaline as standard. A limit of detection as low as 1 fmol/µl with a linear range of up to 125 pmol/µl could be obtained. Intraday and interday precisions were lower than 10 % relative standard deviations for most of the amino acids. Quantification using l-norvaline as internal standard gave very similar results compared to the quantification using deuterated amino acid as internal standards. Using this protocol, it was possible to record the amino acid profiles of only a single root from Arabidopsis thaliana seedlings and to compare it with the amino acid profiles of 20 dissected root meristems (200 μm).} } @Article{IPB-1269, author = {Wasternack, C. and}, title = {{Perception, signaling and cross-talk of jasmonates and the seminal contributions of the Daoxin Xie’s lab and the Chuanyou Li’s lab}}, year = {2014}, pages = {707-718}, journal = {Plant Cell Rep.}, doi = {10.1007/s00299-014-1608-5}, volume = {33}, abstract = {Jasmonates (JAs) are lipid-derived signals in plant responses to biotic and abiotic stresses and in development. The most active JA compound is (\+)-7-iso-JA-Ile, a JA conjugate with isoleucine. Biosynthesis, metabolism and key components of perception and signal transduction have been identified and numerous JA-induced gene expression data collected. For JA-Ile perception, the SCFCOI1–JAZ co-receptor complex has been identified and crystalized. Activators such as MYC2 and repressors such as JAZs including their targets were found. Involvement of JA-Ile in response to herbivores and pathogens and in root growth inhibition is among the most studied aspects of JA-Ile signaling. There are an increasing number of examples, where JA-Ile shows cross-talk with other plant hormones. Seminal contributions in JA/JA-Ile research were given by Daoxin Xie’s lab and Chuanyou Li’s lab, both in Beijing. Here, characterization was done regarding components of the JA-Ile receptor, such as COI1 (JAI1) and SCF, regarding activators (MYCs, MYBs) and repressors (JAV1, bHLH IIId’s) of JA-regulated gene expression, as well as regarding components of auxin biosynthesis and action, such as the transcription factor PLETHORA active in the root stem cell niche. This overview reflects the work of both labs in the light of our present knowledge on biosynthesis, perception and signal transduction of JA/JA-Ile and its cross-talk to other hormones.} } @Article{IPB-1268, author = {Wasternack, C. and Hause, B. and}, title = {{Blütenduft, Abwehr, Entwicklung: Jasmonsäure - ein universelles Pflanzenhormon}}, year = {2014}, pages = {164-171}, journal = {Biologie in unserer Zeit}, doi = {10.1002/biuz.201410535}, volume = {44}, abstract = {Pflanzen müssen gegen vielfältige biotische und abiotische Umwelteinflusse eine Abwehr aufbauen. Aber gleichzeitig müssen sie wachsen und sich vermehren. Jasmonate sind neben anderen Hormonen ein zentrales Signal bei der Etablierung von Abwehrmechanismen, aber auch Signal von Entwicklungsprozessen wie Blüten‐ und Trichombildung, sowie der Hemmung von Wachstum. Biosynthese und essentielle Komponenten der Signaltransduktion von JA und seinem biologisch aktiven Konjugat JA‐Ile sind gut untersucht. Der Rezeptor ist ein Proteinkomplex, der “JA‐Ile‐Wahrnehmung” mit proteasomalem Abbau von Repressorproteinen verbindet. Dadurch können positiv agierende Transkriptionsfaktoren wirksam werden und vielfältige Genexpressionsänderungen auslösen. Dies betrifft die Bildung von Abwehrproteinen, Enzymen der JA‐Biosynthese und Sekundärstoffbildung, und Proteinen von Signalketten und Entwicklungsprozessen. Die Kenntnisse zur JA‐Ile‐Wirkung werden in Landwirtschaft und Biotechnologie genutzt.} } @Article{IPB-1267, author = {Wasternack, C. and}, title = {{Action of jasmonates in plant stress responses and development — Applied aspects}}, year = {2014}, pages = {31-39}, journal = {Biotechnol. Adv.}, doi = {10.1016/j.biotechadv.2013.09.009}, volume = {32}, abstract = {Jasmonates (JAs) are lipid-derived compounds acting as key signaling compounds in plant stress responses and development. The JA co-receptor complex and several enzymes of JA biosynthesis have been crystallized, and various JA signal transduction pathways including cross-talk to most of the plant hormones have been intensively studied. Defense to herbivores and necrotrophic pathogens are mediated by JA. Other environmental cues mediated by JA are light, seasonal and circadian rhythms, cold stress, desiccation stress, salt stress and UV stress. During development growth inhibition of roots, shoots and leaves occur by JA, whereas seed germination and flower development are partially affected by its precursor 12-oxo-phytodienoic acid (OPDA). Based on these numerous JA mediated signal transduction pathways active in plant stress responses and development, there is an increasing interest in horticultural and biotechnological applications. Intercropping, the mixed growth of two or more crops, mycorrhization of plants, establishment of induced resistance, priming of plants for enhanced insect resistance as well as pre- and post-harvest application of JA are few examples. Additional sources for horticultural improvement, where JAs might be involved, are defense against nematodes, biocontrol by plant growth promoting rhizobacteria, altered composition of rhizosphere bacterial community, sustained balance between growth and defense, and improved plant immunity in intercropping systems. Finally, biotechnological application for JA-induced production of pharmaceuticals and application of JAs as anti-cancer agents were intensively studied.} } @Article{IPB-1260, author = {Song, S. and Qi, T. and Wasternack, C. and Xie, D. and}, title = {{Jasmonate signaling and crosstalk with gibberellin and ethylene}}, year = {2014}, pages = {112-119}, journal = {Curr. Opin. Plant Biol.}, doi = {10.1016/j.pbi.2014.07.005}, volume = {21}, abstract = {The phytohormone jasmonate (JA) plays essential roles in plant growth, development and defense. In response to the JA signal, the CORONATINE INSENSITIVE 1 (COI1)-based SCF complexes recruit JASMONATE ZIM-domain (JAZ) repressors for ubiquitination and degradation, and subsequently regulate their downstream signaling components essential for various JA responses. Tremendous progress has been made in understanding the JA signaling pathway and its crosstalk with other phytohormone pathways during the past two decades. Recent studies have revealed that a variety of positive and negative regulators act as targets of JAZs to control distinctive JA responses, and that JAZs and these regulators function as crucial interfaces to mediate synergy and antagonism between JA and other phytohormones. Owing to different regulatory players in JA perception and JA signaling, a fine-tuning of JA-dependent processes in plant growth, development and defense is achieved. In this review, we will summarize the latest progresses in JA signaling and its crosstalk with gibberellin and ethylene.} } @INBOOK{IPB-74, author = {Wasternack, C. and}, title = {{Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications}}, year = {2014}, pages = {221-263}, chapter = {{Jasmonates in Plant Growth and Stress Responses}}, editor = {Tran, L.-S. P. \& Pal, S., eds.}, doi = {10.1007/978-1-4939-0491-4_8}, abstract = {Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (\+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications.} } @Article{IPB-1320, author = {Kopycki, J. and Wieduwild, E. and Kohlschmidt, J. and Brandt, W. and Stepanova, A. and Alonso, J. and Pedras, M. S. and Abel, S. and Grubb, C. D. and}, title = {{Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition}}, year = {2013}, pages = {37-46}, journal = {Biochem. J.}, doi = {10.1042/BJ20121403}, volume = {450}, abstract = {Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.} } @Article{IPB-1312, author = {Huang, H. and Quint, M. and Gray, W. M. and}, title = {{The eta7/csn3-3 Auxin Response Mutant of Arabidopsis Defines a Novel Function for the CSN3 Subunit of the COP9 Signalosome}}, year = {2013}, pages = {e66578}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0066578}, volume = {8}, abstract = {The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.} } @Article{IPB-1295, author = {Elleuch, A. and Chaâbene, Z. and Grubb, D. C. and Drira, N. and Mejdoub, H. and Khemakhem, B. and}, title = {{Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress}}, year = {2013}, pages = {46-53}, journal = {Ecotoxicol. Environ. Saf.}, doi = {10.1016/j.ecoenv.2013.09.028}, volume = {98}, abstract = {The effects of copper on germination and growth of fenugreek (Trigonella foenum-graecum) was investigated separately using different concentrations of CuSO4. The germination percentage and radical length had different responses to cupric ions: the root growth increased with increasing copper concentration up to 1 mM and Cu2\+ was inhibited thereafter. In contrast, the germination percentage was largely unaffected by concentrations of copper below 10 mM.The reduction in root growth may have been due to inhibition of hydrolytic enzymes such as amylase. Indeed, the average total amylolytic activity decreased from the first day of treatment with [Cu2\+] greater than 1 mM. Furthermore, copper affected various plant growth parameters. Copper accumulation was markedly higher in roots as compared to shoots. While both showed a gradual decrease in growth, this was more pronounced in roots than in leaves and in stems. Excess copper induced an increase in the rate of hydrogen peroxide (H2O2) production and lipid peroxidation in all plant parts, indicating oxidative stress. This redox stress affected leaf chlorophyll and carotenoid content which decreased in response to augmented Cu levels. Additionally, the activities of proteins involved in reactive oxygen species (ROS) detoxification were affected. Cu stress elevated the ascorbate peroxidase (APX) activity more than two times at 10 mM CuSO4. In contrast, superoxide dismutase (SOD) and catalase (CAT) levels showed only minor variations, only at 1 mM Cu2\+. Likewise, total phenol and flavonoid contents were strongly induced by low concentrations of copper, consistent with the role of these potent antioxidants in scavenging ROS such as H2O2, but returned to control levels or below at high [Cu2\+]. Taken together, these results indicate a fundamental shift in the plant response to copper toxicity at low versus high concentrations.} } @Article{IPB-1292, author = {Dekkers, B. J. and Pearce, S. and van Bolderen-Veldkamp, R. and Marshall, A. and Widera, P. and Gilbert, J. and Drost, H.-G. and Bassel, G. W. and Müller, K. and King, J. R. and Wood, A. T. and Grosse, I. and Quint, M. and Krasnogor, N. and Leubner-Metzger, G. and Holdsworth, M. J. and Bentsink, L. and}, title = {{Transcriptional Dynamics of Two Seed Compartments with Opposing Roles in Arabidopsis Seed Germination}}, year = {2013}, pages = {205-215}, journal = {Plant Physiol.}, doi = {10.1104/pp.113.223511}, volume = {163}, abstract = {Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.} } @Article{IPB-1289, author = {Bürstenbinder, K. and Savchenko, T. and Müller, J. and Adamson, A. W. and Stamm, G. and Kwong, R. and Zipp, B. J. and Dinesh, D. C. and Abel, S. and}, title = {{Arabidopsis Calmodulin-binding Protein IQ67-Domain 1 Localizes to Microtubules and Interacts with Kinesin Light Chain-related Protein-1}}, year = {2013}, pages = {1871-1882}, journal = {J. Biol. Chem.}, doi = {10.1074/jbc.M112.396200}, volume = {288}, abstract = {Calcium (Ca2\+) is a key second messenger in eukaryotes and regulates diverse cellular processes, most notably via calmodulin (CaM). In Arabidopsis thaliana, IQD1 (IQ67 domain 1) is the founding member of the IQD family of putative CaM targets. The 33 predicted IQD proteins share a conserved domain of 67 amino acids that is characterized by a unique arrangement of multiple CaM recruitment motifs, including so-called IQ motifs. Whereas IQD1 has been implicated in the regulation of defense metabolism, the biochemical functions of IQD proteins remain to be elucidated. In this study we show that IQD1 binds to multiple Arabidopsis CaM and CaM-like (CML) proteins in vitro and in yeast two-hybrid interaction assays. CaM overlay assays revealed moderate affinity of IQD1 to CaM2 (Kd ∼ 0.6 μm). Deletion mapping of IQD1 demonstrated the importance of the IQ67 domain for CaM2 binding in vitro, which is corroborated by interaction of the shortest IQD member, IQD20, with Arabidopsis CaM/CMLs in yeast. A genetic screen of a cDNA library identified Arabidopsis kinesin light chain-related protein-1 (KLCR1) as an IQD1 interactor. The subcellular localization of GFP-tagged IQD1 proteins to microtubules and the cell nucleus in transiently and stably transformed plant tissues (tobacco leaves and Arabidopsis seedlings) suggests direct interaction of IQD1 and KLCR1 in planta that is supported by GFP∼IQD1-dependent recruitment of RFP∼KLCR1 and RFP∼CaM2 to microtubules. Collectively, the prospect arises that IQD1 and related proteins provide Ca2\+/CaM-regulated scaffolds for facilitating cellular transport of specific cargo along microtubular tracks via kinesin motor proteins.} } @Article{IPB-1353, author = {Wasternack, C. and Hause, B. and}, title = {{Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany}}, year = {2013}, pages = {1021-1058}, journal = {Ann. Bot.}, doi = {10.1093/aob/mct067}, volume = {111}, abstract = {BackgroundJasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.ConclusionsThe last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.} } @Article{IPB-1352, author = {Wasternack, C. and Forner, S. and Strnad, M. and Hause, B. and}, title = {{Jasmonates in flower and seed development}}, year = {2013}, pages = {79-85}, journal = {Biochimie}, doi = {10.1016/j.biochi.2012.06.005}, volume = {95}, abstract = {Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.} } @Article{IPB-1331, author = {Poeschl, Y. and Delker, C. and Trenner, J. and Ullrich, K. K. and Quint, M. and Grosse, I. and}, title = {{Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species}}, year = {2013}, pages = {e78497}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0078497}, volume = {8}, abstract = {Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays are restricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence, transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or more species often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to a microarray of a closely related species. When analyzing these cross-species microarray expression data, differences in the transcriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes due to mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts of non-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach for comparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcripts of orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarray designed for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomic DNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resulting expression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringency and accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. As an added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides a superior base for biological interpretation of the measured expression responses.} } @Article{IPB-1327, author = {Navarro-Quezada, A. and Schumann, N. and Quint, M. and}, title = {{Plant F-Box Protein Evolution Is Determined by Lineage-Specific Timing of Major Gene Family Expansion Waves}}, year = {2013}, pages = {e68672}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0068672}, volume = {8}, abstract = {F-box proteins (FBPs) represent one of the largest and fastest evolving gene/protein families in the plant kingdom. The FBP superfamily can be divided in several subfamilies characterized by different C-terminal protein-protein interaction domains that recruit targets for proteasomal degradation. Hence, a clear picture of their phylogeny and molecular evolution is of special interest for the general understanding of evolutionary histories of multi-domain and/or large protein families in plants. In an effort to further understand the molecular evolution of F-box family proteins, we asked whether the largest subfamily in Arabidopsis thaliana, which carries a C-terminal F-box associated domain (FBA proteins) shares evolutionary patterns and signatures of selection with other FBPs. To address this question, we applied phylogenetic and molecular evolution analyses in combination with the evaluation of transcriptional profiles. Based on the 2219 FBA proteins we de novo identified in 34 completely sequenced plant genomes, we compared their evolutionary patterns to a previously analyzed large subfamily carrying C-terminal kelch repeats. We found that these two large FBP subfamilies generally tend to evolve by massive waves of duplication, followed by sequence conservation of the F-box domain and sequence diversification of the target recruiting domain. We conclude that the earlier in evolutionary time a major wave of expansion occurred, the more pronounced these selection signatures are. As a consequence, when performing cross species comparisons among FBP subfamilies, significant differences will be observed in the selective signatures of protein-protein interaction domains. Depending on the species, the investigated subfamilies comprise up to 45% of the complete superfamily, indicating that other subfamilies possibly follow similar modes of evolution.} } @Article{IPB-1279, author = {Acosta, I. F. and Gasperini, D. and Chételat, A. and Stolz, S. and Santuari, L. and Farmer, E. E. and}, title = {{Role of NINJA in root jasmonate signaling}}, year = {2013}, pages = {15473-15478}, journal = {Proc. Natl. Acad. Sci. U.S.A.}, doi = {10.1073/pnas.1307910110}, volume = {110}, abstract = {Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.} } @Article{IPB-1278, author = {Abel, S. and Bürstenbinder, K. and Müller, J. and}, title = {{The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking}}, year = {2013}, pages = {e24369}, journal = {Plant Signal Behav.}, doi = {10.4161/psb.24369}, volume = {8}, abstract = {Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.} } @INBOOK{IPB-85, author = {Wasternack, C. and Hause, B. and}, title = {{Festkolloquium der Leopoldina anlässlich des 80. Geburtstages von Herrn Altpräsidenten Benno Parthier}}, year = {2013}, pages = {29-38}, chapter = {{Benno Parthier und die Jasmonatforschung in Halle}}, journal = {Nova Acta Leopoldina}, editor = {Hacker, J., ed.}, url = {https://www.leopoldina.org/publikationen/detailansicht/publication/festkolloquium-der-leopoldina-anlaesslich-des-80-geburtstages-von-herrn-altpraesidenten-benno-parthie/}, volume = {Supplementum Nr. 28}, }