zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 21 bis 26 von 26.

Publikation

Grubb, C. D.; Zipp, B. J.; Ludwig-Müller, J.; Masuno, M. N.; Molinski, T. F.; Abel, S.; Arabidopsis glucosyltransferase UGT74B1 functions in glucosinolate biosynthesis and auxin homeostasis Plant J. 40, 893-908, (2004) DOI: 10.1111/j.1365-313X.2004.02261.x

Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP‐glucose:thiohydroximate S‐glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low K m values for phenylacetothiohydroximic acid (approximately 6 μ m ) and UDP‐glucose (approximately 50 μm ) strongly suggest that thiohydroximates are in vivo substrates of UGT74B1. Insertional loss‐of‐function ugt74b1 mutants exhibit significantly decreased, but not abolished, glucosinolate accumulation. In addition, ugt74b1 mutants display phenotypes reminiscent of auxin overproduction, such as epinastic cotyledons, elongated hypocotyls in light‐grown plants, excess adventitious rooting and incomplete leaf vascularization. Indeed, during early plant development, mutant ugt74b1 seedlings accumulate nearly threefold more indole‐3‐acetic acid than the wild type. Other phenotypes, however, such as chlorosis along the leaf veins, are likely caused by thiohydroximate toxicity. Analysis of UGT74B1 promoter activity during plant development reveals expression patterns consistent with glucosinolate metabolism and induction by auxin treatment. The results are discussed in the context of known mutations in glucosinolate pathway genes and their effects on auxin homeostasis. Taken together, our work provides complementary in vitro and in vivo evidence for a primary role of UGT74B1 in glucosinolate biosynthesis.
Publikation

Groß, N.; Wasternack, C.; Köck, M.; Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus) Phytochemistry 65, 1343-1350, (2004) DOI: 10.1016/j.phytochem.2004.04.036

Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.RNaseLE expression was analyzed by pharmacological studies of different tomato lines and upon wounding of leaves. The gene is only locally activated via a new type of wound-induced signaling pathway in a jasmonate/systemin-independent manner.
Publikation

Frisch, M.; Quint, M.; Lübberstedt, T.; Melchinger, A. E.; Duplicate marker loci can result in incorrect locus orders on linkage maps Theor. Appl. Genet. 109, 305-316, (2004) DOI: 10.1007/s00122-003-1578-4

Genetic linkage maps, constructed from multi-locus recombination data, are the basis for many applications of molecular markers. For the successful employment of a linkage map, it is essential that the linear order of loci on a chromosome is correct. The objectives of this theoretical study were to (1) investigate the occurrence of incorrect locus orders caused by duplicate marker loci, (2) develop a statistical test for the detection of duplicate markers, and (3) discuss the implications for practical applications of linkage maps. We derived conditions, under which incorrect locus orders do or do not occur with duplicate marker loci for the general case of n markers on a chromosome in a BC1 mapping population. We further illustrated these conditions numerically for the special case of four markers. On the basis of the extent of segregation distortion, an exact test for the presence of duplicate marker loci was suggested and its power was investigated numerically. Incorrect locus orders caused by duplicate marker loci can (1) negatively affect the assignment of target genes to chromosome regions in a map-based cloning experiment, (2) hinder indirect selection for a favorable allele at a quantitative trait locus, and (3) decrease the efficiency of reducing the length of the chromosome segment attached to a target gene in marker-assisted backcrossing.
Publikation

Flores, R.; Delgado, S.; Gas, M.-E.; Carbonell, A.; Molina, D.; Gago, S.; De la Peña, M.; Viroids: the minimal non-coding RNAs with autonomous replication FEBS Lett. 567, 42-48, (2004) DOI: 10.1016/j.febslet.2004.03.118

Viroids are small (246–401 nucleotides), non‐coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae , whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA‐based rolling‐circle mechanism in three steps: (1) synthesis of longer‐than‐unit strands catalyzed by host DNA‐dependent RNA polymerases forced to transcribe RNA templates, (2) processing to unit‐length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid‐specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.
Publikation

Bücking, H.; Förster, H.; Stenzel, I.; Miersch, O.; Hause, B.; Applied jasmonates accumulate extracellularly in tomato, but intracellularly in barley FEBS Lett. 562, 45-50, (2004) DOI: 10.1016/S0014-5793(04)00178-4

Jasmonic acid (JA) and its derivatives are well‐characterized signaling molecules in plant defense and development, but the site of their localization within plant tissue is entirely unknown. To address the question whether applied JA accumulates extracellularly or intracellularly, leaves of tomato and barley were fed with 14C‐labeled JA and the label was localized in cryofixed and lyophilized leaf tissues by microautoradiography. In tomato the radioactivity was detectable within the apoplast, but no label was found within the mesophyll cells. By contrast, in barley leaf tissues, radioactivity was detected within the mesophyll cells suggesting a cellular uptake of exogenously applied JA. JA, applied to leaves of both plants as in the labeling experiments, led in all leaf cells to the expression of JA‐inducible genes indicating that the perception is completed by JA signal transduction.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates—Biosynthesis and Role in Stress Responses and Developmental Processes 143-155, (2004) DOI: 10.1016/B978-012520915-1/50012-6

This chapter presents jasmonates and their related compounds and discusses jasmonate-induced alteration of gene expression. Jasmonates exerts two different changes in gene expression— decrease in the expression of nuclear- and chloroplast-encoded genes and increase in the expression of specific genes. Jasmonates are shown to alter sink-source relationships such as JA promotes formation of the N-rich vegetative storage proteins—VSPα and VSPβ—of soybean, including reallocation in pod filling. In addition to such nutrient reallocation to other parts of the plant, jasmonates cause decreases in photosynthesis and chlorophyll content, the most significant manifestations of senescence in leaves. The rise of endogenous jasmonates upon stress or exogenous treatment with jasmonates correlates in time with the expression of various genes. The promotion of senescence by jasmonates is counteracted by cytokinins. The capacity of jasmonates to down regulate photosynthetic genes may also be one determinant in the onset of senescence.
IPB Mainnav Search