@Article{IPB-1359, author = {Wasternack, C. and Hause, B. and}, title = {{Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany}}, year = {2013}, pages = {1021-1058}, journal = {Ann. Bot.}, doi = {10.1093/aob/mct067}, volume = {111}, abstract = {BackgroundJasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.ConclusionsThe last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.} } @Article{IPB-1358, author = {Wasternack, C. and Forner, S. and Strnad, M. and Hause, B. and}, title = {{Jasmonates in flower and seed development}}, year = {2013}, pages = {79-85}, journal = {Biochimie}, doi = {10.1016/j.biochi.2012.06.005}, volume = {95}, abstract = {Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.} } @Article{IPB-1337, author = {Poeschl, Y. and Delker, C. and Trenner, J. and Ullrich, K. K. and Quint, M. and Grosse, I. and}, title = {{Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species}}, year = {2013}, pages = {e78497}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0078497}, volume = {8}, abstract = {Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays are restricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence, transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or more species often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to a microarray of a closely related species. When analyzing these cross-species microarray expression data, differences in the transcriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes due to mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts of non-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach for comparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcripts of orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarray designed for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomic DNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resulting expression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringency and accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. As an added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides a superior base for biological interpretation of the measured expression responses.} } @Article{IPB-1333, author = {Navarro-Quezada, A. and Schumann, N. and Quint, M. and}, title = {{Plant F-Box Protein Evolution Is Determined by Lineage-Specific Timing of Major Gene Family Expansion Waves}}, year = {2013}, pages = {e68672}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0068672}, volume = {8}, abstract = {F-box proteins (FBPs) represent one of the largest and fastest evolving gene/protein families in the plant kingdom. The FBP superfamily can be divided in several subfamilies characterized by different C-terminal protein-protein interaction domains that recruit targets for proteasomal degradation. Hence, a clear picture of their phylogeny and molecular evolution is of special interest for the general understanding of evolutionary histories of multi-domain and/or large protein families in plants. In an effort to further understand the molecular evolution of F-box family proteins, we asked whether the largest subfamily in Arabidopsis thaliana, which carries a C-terminal F-box associated domain (FBA proteins) shares evolutionary patterns and signatures of selection with other FBPs. To address this question, we applied phylogenetic and molecular evolution analyses in combination with the evaluation of transcriptional profiles. Based on the 2219 FBA proteins we de novo identified in 34 completely sequenced plant genomes, we compared their evolutionary patterns to a previously analyzed large subfamily carrying C-terminal kelch repeats. We found that these two large FBP subfamilies generally tend to evolve by massive waves of duplication, followed by sequence conservation of the F-box domain and sequence diversification of the target recruiting domain. We conclude that the earlier in evolutionary time a major wave of expansion occurred, the more pronounced these selection signatures are. As a consequence, when performing cross species comparisons among FBP subfamilies, significant differences will be observed in the selective signatures of protein-protein interaction domains. Depending on the species, the investigated subfamilies comprise up to 45% of the complete superfamily, indicating that other subfamilies possibly follow similar modes of evolution.} } @Article{IPB-1326, author = {Kopycki, J. and Wieduwild, E. and Kohlschmidt, J. and Brandt, W. and Stepanova, A. and Alonso, J. and Pedras, M. S. and Abel, S. and Grubb, C. D. and}, title = {{Kinetic analysis of Arabidopsis glucosyltransferase UGT74B1 illustrates a general mechanism by which enzymes can escape product inhibition}}, year = {2013}, pages = {37-46}, journal = {Biochem. J.}, doi = {10.1042/BJ20121403}, volume = {450}, abstract = {Plant genomes encode numerous small molecule glycosyltransferases which modulate the solubility, activity, immunogenicity and/or reactivity of hormones, xenobiotics and natural products. The products of these enzymes can accumulate to very high concentrations, yet somehow avoid inhibiting their own biosynthesis. Glucosyltransferase UGT74B1 (UDP-glycosyltransferase 74B1) catalyses the penultimate step in the core biosynthetic pathway of glucosinolates, a group of natural products with important functions in plant defence against pests and pathogens. We found that mutation of the highly conserved Ser284 to leucine [wei9-1 (weak ethylene insensitive)] caused only very mild morphological and metabolic phenotypes, in dramatic contrast with knockout mutants, indicating that steady state glucosinolate levels are actively regulated even in unchallenged plants. Analysis of the effects of the mutation via a structural modelling approach indicated that the affected serine interacts directly with UDP-glucose, but also predicted alterations in acceptor substrate affinity and the kcat value, sparking an interest in the kinetic behaviour of the wild-type enzyme. Initial velocity and inhibition studies revealed that UGT74B1 is not inhibited by its glycoside product. Together with the effects of the missense mutation, these findings are most consistent with a partial rapid equilibrium ordered mechanism. This model explains the lack of product inhibition observed both in vitro and in vivo, illustrating a general mechanism whereby enzymes can continue to function even at very high product/precursor ratios.} } @Article{IPB-1318, author = {Huang, H. and Quint, M. and Gray, W. M. and}, title = {{The eta7/csn3-3 Auxin Response Mutant of Arabidopsis Defines a Novel Function for the CSN3 Subunit of the COP9 Signalosome}}, year = {2013}, pages = {e66578}, journal = {PLOS ONE}, doi = {10.1371/journal.pone.0066578}, volume = {8}, abstract = {The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.} } @Article{IPB-1301, author = {Elleuch, A. and Chaâbene, Z. and Grubb, D. C. and Drira, N. and Mejdoub, H. and Khemakhem, B. and}, title = {{Morphological and biochemical behavior of fenugreek (Trigonella foenum-graecum) under copper stress}}, year = {2013}, pages = {46-53}, journal = {Ecotoxicol. Environ. Saf.}, doi = {10.1016/j.ecoenv.2013.09.028}, volume = {98}, abstract = {The effects of copper on germination and growth of fenugreek (Trigonella foenum-graecum) was investigated separately using different concentrations of CuSO4. The germination percentage and radical length had different responses to cupric ions: the root growth increased with increasing copper concentration up to 1 mM and Cu2\+ was inhibited thereafter. In contrast, the germination percentage was largely unaffected by concentrations of copper below 10 mM.The reduction in root growth may have been due to inhibition of hydrolytic enzymes such as amylase. Indeed, the average total amylolytic activity decreased from the first day of treatment with [Cu2\+] greater than 1 mM. Furthermore, copper affected various plant growth parameters. Copper accumulation was markedly higher in roots as compared to shoots. While both showed a gradual decrease in growth, this was more pronounced in roots than in leaves and in stems. Excess copper induced an increase in the rate of hydrogen peroxide (H2O2) production and lipid peroxidation in all plant parts, indicating oxidative stress. This redox stress affected leaf chlorophyll and carotenoid content which decreased in response to augmented Cu levels. Additionally, the activities of proteins involved in reactive oxygen species (ROS) detoxification were affected. Cu stress elevated the ascorbate peroxidase (APX) activity more than two times at 10 mM CuSO4. In contrast, superoxide dismutase (SOD) and catalase (CAT) levels showed only minor variations, only at 1 mM Cu2\+. Likewise, total phenol and flavonoid contents were strongly induced by low concentrations of copper, consistent with the role of these potent antioxidants in scavenging ROS such as H2O2, but returned to control levels or below at high [Cu2\+]. Taken together, these results indicate a fundamental shift in the plant response to copper toxicity at low versus high concentrations.} } @Article{IPB-1298, author = {Dekkers, B. J. and Pearce, S. and van Bolderen-Veldkamp, R. and Marshall, A. and Widera, P. and Gilbert, J. and Drost, H.-G. and Bassel, G. W. and Müller, K. and King, J. R. and Wood, A. T. and Grosse, I. and Quint, M. and Krasnogor, N. and Leubner-Metzger, G. and Holdsworth, M. J. and Bentsink, L. and}, title = {{Transcriptional Dynamics of Two Seed Compartments with Opposing Roles in Arabidopsis Seed Germination}}, year = {2013}, pages = {205-215}, journal = {Plant Physiol.}, doi = {10.1104/pp.113.223511}, volume = {163}, abstract = {Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination.} } @Article{IPB-1295, author = {Bürstenbinder, K. and Savchenko, T. and Müller, J. and Adamson, A. W. and Stamm, G. and Kwong, R. and Zipp, B. J. and Dinesh, D. C. and Abel, S. and}, title = {{Arabidopsis Calmodulin-binding Protein IQ67-Domain 1 Localizes to Microtubules and Interacts with Kinesin Light Chain-related Protein-1}}, year = {2013}, pages = {1871-1882}, journal = {J. Biol. Chem.}, doi = {10.1074/jbc.M112.396200}, volume = {288}, abstract = {Calcium (Ca2\+) is a key second messenger in eukaryotes and regulates diverse cellular processes, most notably via calmodulin (CaM). In Arabidopsis thaliana, IQD1 (IQ67 domain 1) is the founding member of the IQD family of putative CaM targets. The 33 predicted IQD proteins share a conserved domain of 67 amino acids that is characterized by a unique arrangement of multiple CaM recruitment motifs, including so-called IQ motifs. Whereas IQD1 has been implicated in the regulation of defense metabolism, the biochemical functions of IQD proteins remain to be elucidated. In this study we show that IQD1 binds to multiple Arabidopsis CaM and CaM-like (CML) proteins in vitro and in yeast two-hybrid interaction assays. CaM overlay assays revealed moderate affinity of IQD1 to CaM2 (Kd ∼ 0.6 μm). Deletion mapping of IQD1 demonstrated the importance of the IQ67 domain for CaM2 binding in vitro, which is corroborated by interaction of the shortest IQD member, IQD20, with Arabidopsis CaM/CMLs in yeast. A genetic screen of a cDNA library identified Arabidopsis kinesin light chain-related protein-1 (KLCR1) as an IQD1 interactor. The subcellular localization of GFP-tagged IQD1 proteins to microtubules and the cell nucleus in transiently and stably transformed plant tissues (tobacco leaves and Arabidopsis seedlings) suggests direct interaction of IQD1 and KLCR1 in planta that is supported by GFP∼IQD1-dependent recruitment of RFP∼KLCR1 and RFP∼CaM2 to microtubules. Collectively, the prospect arises that IQD1 and related proteins provide Ca2\+/CaM-regulated scaffolds for facilitating cellular transport of specific cargo along microtubular tracks via kinesin motor proteins.} } @Article{IPB-1285, author = {Acosta, I. F. and Gasperini, D. and Chételat, A. and Stolz, S. and Santuari, L. and Farmer, E. E. and}, title = {{Role of NINJA in root jasmonate signaling}}, year = {2013}, pages = {15473-15478}, journal = {Proc. Natl. Acad. Sci. U.S.A.}, doi = {10.1073/pnas.1307910110}, volume = {110}, abstract = {Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.} } @Article{IPB-1284, author = {Abel, S. and Bürstenbinder, K. and Müller, J. and}, title = {{The emerging function of IQD proteins as scaffolds in cellular signaling and trafficking}}, year = {2013}, pages = {e24369}, journal = {Plant Signal Behav.}, doi = {10.4161/psb.24369}, volume = {8}, abstract = {Calcium (Ca2+) signaling modules are essential for adjusting plant growth and performance to environmental constraints. Differential interactions between sensors of Ca2+ dynamics and their molecular targets are at the center of the transduction process. Calmodulin (CaM) and CaM-like (CML) proteins are principal Ca2+-sensors in plants that govern the activities of numerous downstream proteins with regulatory properties. The families of IQ67-Domain (IQD) proteins are a large class of plant-specific CaM/CML-targets (e.g., 33 members in A. thaliana) which share a unique domain of multiple varied CaM retention motifs in tandem orientation. Genetic studies in Arabidopsis and tomato revealed first roles for IQD proteins related to basal defense response and plant development. Molecular, biochemical and histochemical analysis of Arabidopsis IQD1 demonstrated association with microtubules as well as targeting to the cell nucleus and nucleolus. In vivo binding to CaM and kinesin light chain-related protein-1 (KLCR1) suggests a Ca2+-regulated scaffolding function of IQD1 in kinesin motor-dependent transport of multiprotein complexes. Furthermore, because IQD1 interacts in vitro with single-stranded nucleic acids, the prospect arises that IQD1 and other IQD family members facilitate cellular RNA localization as one mechanism to control and fine-tune gene expression and protein sorting.} } @INBOOK{IPB-85, author = {Wasternack, C. and Hause, B. and}, title = {{Festkolloquium der Leopoldina anlässlich des 80. Geburtstages von Herrn Altpräsidenten Benno Parthier}}, year = {2013}, pages = {29-38}, chapter = {{Benno Parthier und die Jasmonatforschung in Halle}}, journal = {Nova Acta Leopoldina}, editor = {Hacker, J., ed.}, url = {https://www.leopoldina.org/publikationen/detailansicht/publication/festkolloquium-der-leopoldina-anlaesslich-des-80-geburtstages-von-herrn-altpraesidenten-benno-parthie/}, volume = {Supplementum Nr. 28}, } @Article{IPB-2181, author = {Quint, M. and Mihaljevic, R. and Dussle, C. and Xu, M. and Melchinger, A. and Lübberstedt, T. and}, title = {{Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcane mosaic virus resistance in maize}}, year = {2002}, pages = {355-363}, journal = {Theor. Appl. Genet.}, doi = {10.1007/s00122-002-0953-x}, volume = {105}, abstract = {Three previously published resistance gene analogues (RGAs), pic13, pic21 and pic19, were mapped in relation to sugarcane mosaic virus (SCMV) resistance genes (Scmv1, Scmv2) in maize. We cloned these RGAs from six inbreds including three SCMV-resistant lines (D21, D32, FAP1360A) and three SCMV-susceptible lines (D145, D408, F7). Pairwise sequence alignments among the six inbreds revealed a frequency of one single nucleotide polymorphism (SNP) per 33 bp for the three RGAs, indicating a high degree of polymorphism and a high probability of success in converting RGAs into codominant cleaved amplified polymorphic sequence (CAPS) markers compared to other sequences. SNPs were used to develop CAPS markers for mapping of the three RGAs in relation to Scmv1 (chromosome 6) and Scmv2 (chromosome 3), and for pedigree analyses of resistant inbred lines. By genetic mapping pic21 was shown to be different from Scmv2, whereas pic19 and pic13 are still candidates for Scmv1 and Scmv2, respectively, due to genetic mapping and consistent restriction patterns of ancestral lines.} } @Article{IPB-2179, author = {Nibbe, M. and Hilpert, B. and Wasternack, C. and Miersch, O. and Apel, K. and}, title = {{Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes}}, year = {2002}, pages = {120-128}, journal = {Planta}, doi = {10.1007/s00425-002-0907-1}, volume = {216}, abstract = {The jasmonic acid (JA)-dependent regulation of the Thi2.1 gene had previously been exploited for setting up a genetic screen for the isolation of signal transduction mutants of Arabidopsis thaliana (L.) Heynh. that constitutively express the thionin gene. Several cet mutants had been isolated which showed a constitutive expression of the thionin gene. These cet mutants, except for one, also showed spontaneous leaf cell necrosis and were up-regulated in the expression of the PR1 gene, reactions often associated with the systemic acquired resistance (SAR) pathway. Four of these cet mutants, cet1, cet2, cet3 and cet4.1 were crossed with the fad triple and coi1 mutants that are blocked at two steps within the JA-dependent signaling pathway, and with transgenic NahG plants that are deficient in salicylic acid (SA) and are unable to activate SAR. Analysis of the various double-mutant lines revealed that the four cet genes act within a signaling cascade at or prior to branch points from which not only JA-dependent signals but also SA-dependent signaling and cell death pathways diverge.} } @Article{IPB-2174, author = {Laskowski, M. J. and Dreher, K. A. and Gehring, M. A. and Abel, S. and Gensler, A. L. and Sussex, I. M. and}, title = {{FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase}}, year = {2002}, pages = {578-590}, journal = {Plant Physiol.}, doi = {10.1104/pp.010581}, volume = {128}, abstract = {FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating thatFQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated fromEscherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathioneS-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.} } @Article{IPB-2164, author = {Hause, B. and Maier, W. and Miersch, O. and Kramell, R. and Strack, D. and}, title = {{Induction of Jasmonate Biosynthesis in Arbuscular Mycorrhizal Barley Roots}}, year = {2002}, pages = {1213-1220}, journal = {Plant Physiol.}, doi = {10.1104/pp.006007}, volume = {130}, abstract = {Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck \& Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.} } @Article{IPB-2162, author = {Grubb, C. D. and Gross, H. B. and Chen, D. L. and Abel, S. and}, title = {{Identification of Arabidopsis mutants with altered glucosinolate profiles based on isothiocyanate bioactivity}}, year = {2002}, pages = {143-152}, journal = {Plant Sci.}, doi = {10.1016/S0168-9452(01)00550-7}, volume = {162}, abstract = {Glucosinolates are a diverse class of nitrogen- and sulfur-containing secondary metabolites. They are rapidly hydrolyzed on tissue disruption to a number of biologically active compounds that are increasingly attracting interest as anticarcinogenic phytochemicals and crop protectants. Several glucosinolate-derived isothiocyanates are potent chemopreventive agents that favorably modulate carcinogen metabolism in mammals. Methylsulfinylalkyl isothiocyanates, in particular the 4-methylsulfinylbutyl derivative, are selective and potent inducers of mammalian detoxification enzymes such as quinone reductase (QR). Cruciferous plants including Arabidopsis thaliana (L.) Heyhn, synthesize methylsulfinylalkyl glucosinolates, which are derived from methionine. Using a colorimetric assay for QR activity in murine hepatoma cells and high performance liquid chromatography (HPLC) analysis of desulfoglucosinolates, we have demonstrated a strong positive correlation between leaf QR inducer potency and leaf content of methionine-derived glucosinolates in various A. thaliana ecotypes and available glucosinolate mutants. In a molecular genetic approach to glucosinolate biosynthesis, we screened 3000 chemically mutagenized M2 plants of the Columbia ecotype for altered leaf QR inducer potency. Subsequent HPLC analysis of progeny of putative mutants identified six lines with significant and heritable changes in leaf glucosinolate content and composition.} } @Article{IPB-2156, author = {Feussner, I. and Wasternack, C. and}, title = {{The lipoxygenase pathway}}, year = {2002}, pages = {275-297}, journal = {Annu. Rev. Plant Biol.}, doi = {10.1146/annurev.arplant.53.100301.135248}, volume = {53}, abstract = {Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.} } @Article{IPB-2151, author = {Ellis, C. and Karafyllidis, I. and Wasternack, C. and Turner, J. G. and}, title = {{The Arabidopsis Mutant cev1 Links Cell Wall Signaling to Jasmonate and Ethylene Responses}}, year = {2002}, pages = {1557-1566}, journal = {Plant Cell}, doi = {10.1105/tpc.002022}, volume = {14}, abstract = {Biotic and abiotic stresses stimulate the synthesis of jasmonates and ethylene, which, in turn, induce the expression of genes involved in stress response and enhance defense responses. The cev1 mutant has constitutive expression of stress response genes and has enhanced resistance to fungal pathogens. Here, we show that cev1 plants have increased production of jasmonate and ethylene and that its phenotype is suppressed by mutations that interrupt jasmonate and ethylene signaling. Genetic mapping, complementation analysis, and sequence analysis revealed that CEV1 is the cellulose synthase CeSA3. CEV1 was expressed predominantly in root tissues, and cev1 roots contained less cellulose than wild-type roots. Significantly, the cev1 mutant phenotype could be reproduced by treating wild-type plants with cellulose biosynthesis inhibitors, and the cellulose synthase mutant rsw1 also had constitutive expression of VSP. We propose that the cell wall can signal stress responses in plants.} } @Article{IPB-2150, author = {Dussle, C. and Quint, M. and Xu, M. and Melchinger, A. and Lübberstedt, T. and}, title = {{Conversion of AFLP fragments tightly linked to SCMV resistance genes Scmv1 and Scmv2 into simple PCR-based markers}}, year = {2002}, pages = {1190-1195}, journal = {Theor. Appl. Genet.}, doi = {10.1007/s00122-002-0964-7}, volume = {105}, abstract = {In a previous study, bulked segregant analysis with amplified fragment length polymorphisms (AFLPs) identified several markers closely linked to the sugarcane mosaic virus resistance genes Scmv1 on chromosome 6 and Scmv2 on chromosome 3. Six AFLP markers (E33M61-2, E33M52, E38M51, E82M57, E84M59 and E93M53) were located on chromosome 3 and two markers (E33M61-1 and E35M62-1) on chromosome 6. Our objective in the present study was to sequence the respective AFLP bands in order to convert these dominant markers into more simple and reliable polymerase chain reaction (PCR)-based sequence-tagged site markers. Six AFLP markers resulted either in complete identical sequences between the six inbreds investigated in this study or revealed single nucleotide polymorphisms within the inbred lines and were, therefore, not converted. One dominant AFLP marker (E35M62-1) was converted into an insertion/deletion (indel) marker and a second AFLP marker (E33M61-2) into a cleaved amplified polymorphic sequence marker. Mapping of both converted PCR-based markers confirmed their localization to the same chromosome region (E33M61-2 on chromosome 3; E35M62-1 on chromosome 6) as the original AFLP markers. Thus, these markers will be useful for marker-assisted selection and facilitate map-based cloning of SCMV resistance genes.} } @Article{IPB-2196, author = {Weichert, H. and Kolbe, A. and Kraus, A. and Wasternack, C. and Feussner, I. and}, title = {{Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes}}, year = {2002}, pages = {612-619}, journal = {Planta}, doi = {10.1007/s00425-002-0779-4}, volume = {215}, abstract = {A particular isoform of lipoxygenase (LOX) localized on lipid bodies was shown by earlier investigations to play a role in initiating the mobilization of triacylglycerols during seed germination. Here, further physiological functions of LOXs within whole cotyledons of cucumber (Cucumis sativus L.) were analyzed by measuring the endogenous amounts of LOX-derived products. The lipid-body LOX-derived esterified (13S)-hydroperoxy linoleic acid was the dominant metabolite of the LOX pathway in this tissue. It accumulated to about 14 µmol/g fresh weight, which represented about 6% of the total amount of linoleic acid in cotyledons. This LOX product was not only reduced to its hydroxy derivative, leading to degradation by β-oxidation, but alternatively it was metabolized by fatty acid hydroperoxide lyase leading to formation of hexanal as well. Furthermore, the activities of LOX forms metabolizing linolenic acid were detected by measuring the accumulation of volatile aldehydes and the allene oxide synthase-derived metabolite jasmonic acid. The first evidence is presented for an involvement of a lipid-body LOX form in the production of volatile aldehydes.} } @Article{IPB-2195, author = {Wang, Q. and Grubb, C. D. and Abel, S. and}, title = {{Direct analysis of single leaf disks for chemopreventive glucosinolates}}, year = {2002}, pages = {152-157}, journal = {Phytochem. Anal.}, doi = {10.1002/pca.636}, volume = {13}, abstract = {Natural isothiocyanates, produced during plant tissue damage from methionine‐derived glucosinolates, are potent inducers of mammalian phase 2 detoxification enzymes such as quinone reductase (QR). A greatly simplified bioassay for glucosinolates based on induction and colorimetric detection of QR activity in murine hepatoma cells is described. It is demonstrated that excised leaf disks of Arabidopsis thaliana (ecotype Columbia) can directly and reproducibly substitute for cell‐free leaf extracts as inducers of murine QR, which reduces sample preparation to a minimum and maximizes throughput. A comparison of 1 and 3 mm diameter leaf disks indicated that QR inducer potency was proportional to disk circumference (extent of tissue damage) rather than to area. When compared to the QR inducer potency of the corresponding amount of extract, 1 mm leaf disks were equally effective, whereas 3 mm disks were 70% as potent. The QR inducer potency of leaf disks correlated positively with the content of methionine‐derived glucosinolates, as shown by the analysis of wild‐type plants and mutant lines with lower or higher glucosinolate content. Thus, the microtitre plate‐based assay of single leaf disks provides a robust and inexpensive visual method for rapidly screening large numbers of plants in mapping populations or mutant collections and may be applicable to other glucosinolate‐producing species.} } @Article{IPB-2191, author = {Vigliocco, A. and Bonamico, B. and Alemano, S. and Miersch, O. and Abdala, G. and}, title = {{Stimulation of jasmonic acid production in Zea Mays L. infected by the maize rough dwarf virus - Río Cuarto. Reversion of symptoms by salicylic acid}}, year = {2002}, pages = {369-374}, journal = {Biocell}, url = {https://www.techscience.com/biocell/v26n3/34012}, volume = {26}, abstract = {In the present paper we study the possible biological relevance of endogenous jasmonic acid (JA) and exogenous salicylic acid (SA) in a plant-microbial system maize-virus. The virus disease \"Mal de Río Cuarto\" is caused by the maize rough dwarf virus - Río Cuarto. The characteristic symptoms are the appearance of galls or \"enations\" in leaves, shortening of the stem internodes, poor radical system and general stunting. Changes in JA and protein pattern in maize control and infected plants of a virus-tolerant cultivar were investigated. Healthy and infected-leaf discs were collected for JA measurement at different post-infection times (20, 40, 60 and 68 days). JA was also measured in roots on day 60 after infection. For SDS-PAGE protein analysis, leaf discs were also harvested on day 60 after infection. Infected leaves showed higher levels of JA than healthy leaves, and the rise in endogenous JA coincided with the enation formation. The soluble protein amount did not show differences between infected and healthy leaves; moreover, no difference in the expression of soluble protein was revealed by SDS-PAGE. Our results show that the octadecanoid pathway was stimulated in leaves and roots of the tolerant maize cultivar when infected by this virus. This finding, together with fewer plants with the disease symptoms, suggest that higher foliar and roots JA content may be related to disease tolerance. SA exogenous treatment caused the reversion of the dwarfism symptom.} } @Article{IPB-2184, author = {Schilling, S. and Hoffmann, T. and Rosche, F. and Manhart, S. and Wasternack, C. and Demuth, H.-U. and}, title = {{Heterologous Expression and Characterization of Human Glutaminyl Cyclase: Evidence for a Disulfide Bond with Importance for Catalytic Activity}}, year = {2002}, pages = {10849-10857}, journal = {Biochemistry}, doi = {10.1021/bi0260381}, volume = {41}, abstract = {Glutaminyl cyclase (QC, EC 2.3.2.5) catalyzes the formation of pyroglutamate residues from glutamine at the N-terminus of peptides and proteins. In the current study, human QC was functionally expressed in the secretory pathway of Pichia pastoris, yielding milligram quantities after purification from the supernatant of a 5 L fermentation. Initial characterization studies of the recombinant QC using MALDI-TOF mass spectrometry revealed correct proteolytic processing and N-glycosylation at both potential sites with similar 2 kDa extensions. CD spectral analysis indicated a high α-helical content, which contrasts with plant QC from Carica papaya. The kinetic parameters for conversion of H-Gln-Tyr-Ala-OH by recombinant human QC were almost identical to those previously reported for purified bovine pituitary QC. However, the results obtained for conversion of H-Gln-Gln-OH, H-Gln-NH2, and H-Gln-AMC were found to be contradictory to previous studies on human QC expressed intracellularly in E. coli. Expression of QC in E. coli showed that approximately 50% of the protein did not contain a disulfide bond that is present in the entire QC expressed in P. pastoris. Further, the enzyme was consistently inactivated by treatment with 15 mM DTT, whereas deglycosylation had no effect on enzymatic activity. Analysis of the fluorescence spectra of the native, reduced, and unfolded human QC point to a conformational change of the protein upon treatment with DTT. In terms of the different enzymatic properties, the consequences of QC expression in different environments are discussed.} } @Article{IPB-2183, author = {Schilling, S. and Hoffmann, T. and Wermann, M. and Heiser, U. and Wasternack, C. and Demuth, H.-U. and}, title = {{Continuous Spectrometric Assays for Glutaminyl Cyclase Activity}}, year = {2002}, pages = {49-56}, journal = {Anal. Biochem.}, doi = {10.1006/abio.2001.5560}, volume = {303}, abstract = {The enzymatic conversion of one chromogenic substrate, -glutamine-p-nitroanilide, and two fluorogenic substrates, -glutaminyl-2-naphthylamide and -glutaminyl-4-methylcoumarinylamide, into their respective pyroglutamic acid derivatives by glutaminyl cyclase (QC) was estimated by introducing a new coupled assay using pyroglutamyl aminopeptidase as the auxiliary enzyme. For the purified papaya QC, the kinetic parameters were found to be in the range of those previously reported for other glutaminyl peptides, such as Gln-Gln, Gln-Ala, or Gln-tert-butyl ester. The assay can be performed in the presence of ammonia up to a concentration of 50 mM. Increasing ionic strength, e.g., potassium chloride up to 300 mM, resulted in an increase in enzymatic activity of about 20%. This is the first report of a fast, continuous, and reliable determination of QC activity, even in the presence of ammonium ions, during the course of protein purification and enzymatic analysis.} } @Article{IPB-2137, author = {Bachmann, A. and Hause, B. and Maucher, H. and Garbe, E. and Vörös, K. and Weichert, H. and Wasternack, C. and Feussner, I. and}, title = {{Jasmonate-Induced Lipid Peroxidation in Barley Leaves Initiated by Distinct 13-LOX Forms of Chloroplasts}}, year = {2002}, pages = {1645-1657}, journal = {Biol. Chem.}, doi = {10.1515/BC.2002.185}, volume = {383}, abstract = {In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.} } @Article{IPB-2134, author = {Abel, S. and Ticconi, C. A. and Delatorre, C. A. and}, title = {{Phosphate sensing in higher plants}}, year = {2002}, pages = {1-8}, journal = {Physiol. Plant.}, doi = {10.1034/j.1399-3054.2002.1150101.x}, volume = {115}, abstract = {Phosphate (Pi) plays a central role as reactant and effector molecule in plant cell metabolism. However, Pi is the least accessible macronutrient in many ecosystems and its low availability often limits plant growth. Plants have evolved an array of molecular and morphological adaptations to cope with Pi limitation, which include dramatic changes in gene expression and root development to facilitate Pi acquisition and recycling. Although physiological responses to Pi starvation have been increasingly studied and understood, the initial molecular events that monitor and transmit information on external and internal Pi status remain to be elucidated in plants. This review summarizes molecular and developmental Pi starvation responses of higher plants and the evidence for coordinated regulation of gene expression, followed by a discussion of the potential involvement of plant hormones in Pi sensing and of molecular genetic approaches to elucidate plant signalling of low Pi availability. Complementary genetic strategies in Arabidopsis thaliana have been developed that are expected to identify components of plant signal transduction pathways involved in Pi sensing. Innovative screening methods utilize reporter gene constructs, conditional growth on organophosphates and the inhibitory properties of the Pi analogue phosphite, which hold the promise for significant advances in our understanding of the complex mechanisms by which plants regulate Pi‐starvation responses.} } @Article{IPB-2133, author = {Abdala, G. and Castro, G. and Miersch, O. and Pearce, D. and}, title = {{Changes in jasmonate and gibberellin levels during development of potato plants (Solanum tuberosum)}}, year = {2002}, pages = {121-126}, journal = {Plant Growth Regul.}, doi = {10.1023/A:1015065011536}, volume = {36}, abstract = {Among the multiple environmental signals and hormonal factors regulatingpotato plant morphogenesis and controlling tuber induction, jasmonates (JAs)andgibberellins (GAs) are important components of the signalling pathways in theseprocesses. In the present study, with Solanum tuberosum L.cv. Spunta, we followed the endogenous changes of JAs and GAs during thedevelopmental stages of soil-grown potato plants. Foliage at initial growthshowed the highest jasmonic acid (JA) concentration, while in roots the highestcontent was observed in the stage of tuber set. In stolons at the developmentalstage of tuber set an important increase of JA was found; however, in tubersthere was no change in this compound during tuber set and subsequent growth.Methyl jasmonate (Me-JA) in foliage did not show the same pattern as JA; Me-JAdecreased during the developmental stages in which it was monitored, meanwhileJA increased during those stages. The highest total amount of JAs expressed asJA \+ Me-JA was found at tuber set. A very important peak ofJA in roots was coincident with that observed in stolons at tuber set. Also, aprogressive increase of this compound in roots was shown during the transitionof stolons to tubers. Of the two GAs monitored, gibberellic acid(GA3) was the most abundant in all the organs. While GA1and GA3 were also found in stolons at the time of tuber set, noothermeasurements of GAs were obtained for stolons at previous stages of plantdevelopment. Our results indicate that high levels of JA and GAs are found indifferent tissues, especially during stolon growth and tuber set.} } @INBOOK{IPB-159, author = {Wasternack, C. and Hause, B. and}, year = {2002}, pages = {165-221}, chapter = {{Jasmonates and octadecanoids: Signals in plant stress responses and development}}, journal = {Prog. Nucleic Acid Res. Mol. Biol.}, doi = {10.1016/S0079-6603(02)72070-9}, volume = {72}, abstract = {Plants are sessile organisms. Consequently they have to adapt constantly to fluctuations in the environment. Some of these changes involve essential factors such as nutrients, light, and water. Plants have evolved independent systems to sense nutrients such as phosphate and nitrogen. However, many of the environmental factors may reach levels which represent stress for the plant. The fluctuations can range between moderate and unfavorable, and the factors can be of biotic or abiotic origin. Among the biotic factors influencing plant life are pathogens and herbivores. In case of bacteria and fungi, symbiotic interactions such as nitrogen-fixating nodules and mycorrhiza, respectively, may be established. In case of insects, a tritrophic interaction of herbivores, carnivores, and plants may occur mutualistically or parasitically. Among the numerous abiotic factors are low temperature, frost, heat, high light conditions, ultraviolet light, darkness, oxidation stress, hypoxia, wind, touch, nutrient imbalance, salt stress, osmotic adjustment, water deficit, and desiccation.In the last decade jasmonates were recognized as being signals in plant responses to most of these biotic and abiotic factors. Signaling via jasmonates was found to occur intracellularly, and systemically as well as interorganismically. Jasmonates are a group of ubiquitously occurring plant growth regulators originally found as the major constituents in the etheric oil of jasmine, and were first suggested to play a role in senescence due to a strong senescence-promoting effect. Subsequently, numerous developmental processes were described in which jasmonates exhibited hormone-like properties. Recent knowledge is reviewed here on jasmonates and their precursors, the octadecanoids. After discussing occurrence and biosynthesis, emphasis is placed upon the signal transduction pathways in plant stress responses in which jasmonates act a signal. Finally, examples are described on the role of jasmonates in developmental processes.} }