TY - CHAP ID - 74 TI - Jasmonates in Plant Growth and Stress Responses T2 - Phytohormones: A Window to Metabolism, Signaling and Biotechnological Applications PB - PY - 2014 SP - 221-263 AU - Wasternack, C. AU - VL - UR - SN - 978-1-4939-0491-4 DO - 10.1007/978-1-4939-0491-4_8 AB - Jasmonates are lipid-derived compounds which are signals in plant stress responses and development. They are synthesized in chloroplasts and peroxisomes. An endogenous rise occurs upon environmental stimuli or in distinct stages of development such as that of anthers and trichomes or in root growth. Hydroxylation, carboxylation, glucosylation, sulfation, methylation, or conjugation of jasmonic acid (JA) leads to numerous metabolites. Many of them are at least partially biologically inactive. The most bioactive JA is the (+)-7-iso-JA–isoleucine conjugate. Its perception takes place by the SCFCOI1-JAZ-co-receptor complex. At elevated levels of JAs, negative regulators such as JAZ, or JAV are subjected to proteasomal degradation, thereby allowing positively acting transcription factors of the MYC or MYB family to switch on JA-induced gene expression. In case of JAM negative regulation takes place by anatagonism to MYC2. JA and COI1 are dominant signals in gene expression after wounding or in response to necrotrophic pathogens. Cross-talk to salicylic acid, ethylene, auxin, and other hormones occurs. Growth is inhibited by JA, thereby counteracting the growth stimulation by gibberellic acid. Senescence, trichome formation, arbuscular mycorrhiza, and formation of many secondary metabolites are induced by jasmonates. Effects in cold acclimation; in intercropping; during response to herbivores, nematodes, or necrotrophic pathogens; in pre- and post-harvest; in crop quality control; and in biosynthesis of secondary compounds led to biotechnological and agricultural applications. A2 - Tran, L.-S. P. & Pal, S., eds. C1 - Molecular Signal Processing ER - TY - CHAP ID - 85 TI - Benno Parthier und die Jasmonatforschung in Halle T2 - Festkolloquium der Leopoldina anlässlich des 80. Geburtstages von Herrn Altpräsidenten Benno Parthier PB - Nova Acta Leopoldina PY - 2013 SP - 29-38 AU - Wasternack, C. AU - Hause, B. AU - VL - Supplementum Nr. 28 UR - https://www.leopoldina.org/publikationen/detailansicht/publication/festkolloquium-der-leopoldina-anlaesslich-des-80-geburtstages-von-herrn-altpraesidenten-benno-parthie/ AB - A2 - Hacker, J., ed. C1 - Cell and Metabolic Biology; Molecular Signal Processing ER - TY - CHAP ID - 185 TI - Allene Oxide Cyclase from Corn: Partial Purification and Characterization T2 - Physiology, Biochemistry and Molecular Biology of Plant Lipids PB - PY - 1997 SP - 99-101 AU - Ziegler, J. AU - Hamberg, M. AU - Miersch, O. AU - VL - UR - DO - 10.1007/978-94-017-2662-7_32 AB - In plants, the oxylipin pathway gives rise to several oxygenated fatty acid derivatives such as hydroxy- and keto fatty acids as well as volatile aldehydes and cyclic compounds, which are, in part, physiologically active [1]. Among these, jasmonic acid is discussed as signalling molecule during several stress responses, wounding, senescense and plant pathogen interactions [2]. A2 - C1 - Molecular Signal Processing ER - TY - CHAP ID - 181 TI - Do Lipoxygenases Initiate β-Oxidation? T2 - Physiology, Biochemistry and Molecular Biology of Plant Lipids PB - PY - 1997 SP - 250-252 AU - Feussner, I. AU - Kühn, H. AU - Wasternack, C. AU - VL - UR - DO - 10.1007/978-94-017-2662-7_79 AB - The etiolated germination process of oilseed plants is characterized by the mobilization of storage lipids which serve as a major carbon source for the seedlings growth. During this stage the lipid storing organelles, the lipid bodies, are degraded and a new set of proteins, including a specific form of lipoxygenase (LOX), is detectable at their membranes in different plants [1,2]. LOXs are widely distributed in plants and animals and catalyze the regio- and stereo-specific oxygenation of polyunsaturated fatty acids [3]. The enzymatic transformations of the resulting fatty acid hydroperoxides have been extensively studied [4]. Three well characterized enzymes, a lyase, an allene oxide synthase, and a peroxygenase, were shown to degrade hydroperoxides into compounds of physiological importance, such as odors, oxylipins, and jasmonates. We have recently reported a new LOX reaction in plants where a specific LOX, the lipid body LOX, metabolizes esterified fatty acids. This reaction resulted in the formation of 13(S)-hydroxy-linoleic acid (13-HODE) and lead us to propose an additional branch of the LOX pathway: the reductase pathway. Besides a specific LOX form we suggest two additional enzyme activities, a lipid hydroperoxide reductase and a lipid hydroxide-specific lipase which lead to the formation of 13-HODE. 13-HODE might be the endogenous substrate for β-oxidation in the glyoxysomes during germination of oilseeds containing high amounts of polyunsaturated fatty acids. A2 - C1 - Molecular Signal Processing ER -