zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 9 von 9.

Publikation

Wasternack, C.; Hause, B.; Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany Ann. Bot. 111, 1021-1058, (2013) DOI: 10.1093/aob/mct067

BackgroundJasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.ConclusionsThe last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Publikation

Wasternack, C.; Forner, S.; Strnad, M.; Hause, B.; Jasmonates in flower and seed development Biochimie 95, 79-85, (2013) DOI: 10.1016/j.biochi.2012.06.005

Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Benno Parthier und die Jasmonatforschung in Halle (Hacker, J., ed.). Nova Acta Leopoldina Supplementum Nr. 28, 29-38, (2013)

0
Publikation

Wasternack, C.; Stenzel, I.; Hause, B.; Hause, G.; Kutter, C.; Maucher, H.; Neumerkel, J.; Feussner, I.; Miersch, O.; The wound response in tomato – Role of jasmonic acid J. Plant Physiol. 163, 297-306, (2006) DOI: 10.1016/j.jplph.2005.10.014

Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.
Publikation

Sharma, V. K.; Monostori, T.; Göbel, C.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Hause, B.; Schulze, J.; Transgenic barley plants overexpressing a 13-lipoxygenase to modify oxylipin signature Phytochemistry 67, 264-276, (2006) DOI: 10.1016/j.phytochem.2005.11.009

Three chimeric gene constructs were designed comprising the full length cDNA of a lipoxygenase (LOX) from barley (LOX2:Hv:1) including its chloroplast targeting sequence (cTP) under control of either (1) CaMV35S- or (2) polyubiquitin-1-promoter, whereas the third plasmid contains 35S promoter and the cDNA without cTP. Transgenic barley plants overexpressing LOX2:Hv:1 were generated by biolistics of scutella from immature embryos. Transformation frequency for 35S::LOX with or without cTP was in a range known for barley particle bombardment, whereas for Ubi::cTP-LOX no transgenic plants were detected. In general, a high number of green plantlets selected on bialaphos became yellow and finally died either in vitro or after potting. All transgenic plants obtained were phenotypically indistinguishable from wild type plants and all of them set seeds. The corresponding protein (LOX-100) in transgenic T0 and T1 plants accumulated constitutively to similar levels as in the jasmonic acid methyl ester (JAME)-treated wild type plants. Moreover, LOX-100 was clearly detectable immunocytochemically within the chloroplasts of untreated T0 plants containing the LOX-100-cDNA with the chloroplast target sequence. In contrast, an exclusive localization of LOX-100 in the cytoplasm was detectable when the target sequence was removed. In comparison to sorbitol-treated wild type leaves, analysis of oxylipin profiles in T2 progenies showed higher levels of jasmonic acid (JA) for those lines that displayed elevated levels of LOX-100 in the chloroplasts and for those lines that harboured LOX-100 in the cytoplasm, respectively. The studies demonstrate for the first time the constitutive overexpression of a cDNA coding for a 13-LOX in a monocotyledonous species and indicate a link between the occurrence of LOX-100 and senescence.
Publikation

Delker, C.; Stenzel, I.; Hause, B.; Miersch, O.; Feussner, I.; Wasternack, C.; Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products, Regulation Plant Biol. 8, 297-306, (2006) DOI: 10.1055/s-2006-923935

Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Publikation

Stumpe, M.; Carsjens, J.-G.; Stenzel, I.; Göbel, C.; Lang, I.; Pawlowski, K.; Hause, B.; Feussner, I.; Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula Phytochemistry 66, 781-791, (2005) DOI: 10.1016/j.phytochem.2005.01.020

The peroxidation of polyunsaturated fatty acids, common to all eukaryotes, is mostly catalyzed by members of the lipoxygenase enzyme family of non-heme iron containing dioxygenases. Lipoxygenase products can be metabolized further in the oxylipin pathway by several groups of CYP74 enzymes. One prominent oxylipin is jasmonic acid (JA), a product of the 13-allene oxide synthase branch of the pathway and known as signaling substance that plays a role in vegetative and propagative plant development as well as in plant responses to wounding and pathogen attack. In barley roots, JA level increases upon colonization by arbuscular mycorrhizal fungi. Apart from this first result regarding JA, no information is available on the relevance of lipidperoxide metabolism in arbuscular mycorrhizal symbiosis. Thus we analyzed fatty acid and lipidperoxide patterns in roots of Medicago truncatula during mycorrhizal colonization. Levels of fungus-specific fatty acids as well as palmitic acid (16:0) and oleic acid (18:1 n − 9) were increased in mycorrhizal roots. Thus the degree of arbuscular mycorrhizal colonization of roots can be estimated via analysis of fungal specific esterified fatty acids. Otherwise, no significant changes were found in the profiles of esterified and free fatty acids. The 9- and 13-LOX products of linoleic and α-linolenic acid were present in all root samples, but did not show significant differences between mycorrhizal and non-mycorrhizal roots, except JA which showed elevated levels in mycorrhizal roots. In both types of roots levels of 13-LOX products were higher than those of 9-LOX products. In addition, three cDNAs encoding CYP74 enzymes, two 9/13-hydroperoxide lyases and a 13-allene oxide synthase, were isolated and characterized. The transcript accumulation of these three genes, however, was not increased in mycorrhizal roots of M. truncatula.
Publikation

Sharma, V. K.; Monostori, T.; Hause, B.; Maucher, H.; Göbel, C.; Hornung, E.; Hänsch, R.; Bittner, F.; Wasternack, C.; Feussner, I.; Mendel, R. R.; Schulze, J.; Genetic transformation of barley to modify expression of a 13-lipoxygenase Acta Biol. Szeged. 49, 33-34, (2005)

Immature scutella of barley were transformed with cDNA coding for a 13-lipoxygenase of barley (LOX-100) via particle bombardment. Regenerated plants were tested by PAT-assay, Western-analysis and PCR-screening. Immunocytochemical assay of T0 plants showed expression of the LOX cDNA both in the chloroplasts and in the cytosol, depending on the presence of the chloroplast signal peptide sequences in the cDNA. A few transgenic plants containing higher amounts of LOX-derived products have been found. These are the candidates for further analysis concerning pathogen resistance.
Publikation

Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.; Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices Plant Physiol. 139, 1401-1410, (2005) DOI: 10.1104/pp.105.069054

During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
IPB Mainnav Search