zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Zeige Ergebnisse 1 bis 4 von 4.

Bücher und Buchkapitel

Wasternack, C. Jasmonates in plant growth and stress responses. (Tran, L.-S.; Pal, S.). Springer, 221-264, (2014) ISBN: 978-1-4939-0490-7 (hardcover) 978-1-4939-4814-7 (softcover) DOI: 10.1007/978-1-4939-0491-4_8

Abiotic and biotic stresses adversely affect plant growth and productivity. The phytohormones regulate key physiological events under normal and stressful conditions for plant development. Accumulative research efforts have discovered important roles of phytohormones and their interactions in regulation of plant adaptation to numerous stressors. Intensive molecular studies have elucidated various plant hormonal pathways; each of which consist of many signaling components that link a specific hormone perception to the regulation of downstream genes. Signal transduction pathways of auxin, abscisic acid, cytokinins, gibberellins and ethylene have been thoroughly investigated. More recently, emerging signaling pathways of brassinosteroids, jasmonates, salicylic acid and strigolactones offer an exciting gateway for understanding their multiple roles in plant physiological processes.At the molecular level, phytohormonal crosstalks can be antagonistic or synergistic or additive in actions. Additionally, the signal transduction component(s) of one hormonal pathway may interplay with the signaling component(s) of other hormonal pathway(s). Together these and other research findings have revolutionized the concept of phytohormonal studies in plants. Importantly, genetic engineering now enables plant biologists to manipulate the signaling pathways of plant hormones for development of crop varieties with improved yield and stress tolerance.This book, written by internationally recognized scholars from various countries, represents the state-of-the-art understanding of plant hormones’ biology, signal transduction and implications. Aimed at a wide range of readers, including researchers, students, teachers and many others who have interests in this flourishing research field, every section is concluded with biotechnological strategies to modulate hormone contents or signal transduction pathways and crosstalk that enable us to develop crops in a sustainable manner. Given the important physiological implications of plant hormones in stressful environments, our book is finalized with chapters on phytohormonal crosstalks under abiotic and biotic stresses. 
Bücher und Buchkapitel

Wasternack, C. & Hause, B. Benno Parthier und die Jasmonatforschung in Halle Nova Acta Leopoldina, NF Supplementum 28, 29-38, (2013) ISBN: ISBN 978-3-8047-3209-4

0
Bücher und Buchkapitel

Carbonell, A.; Flores, R.; Gago, S. Hammerhead Ribozymes Against Virus and Viroid RNAs (Erdmann, V. A. & Barciszewski, J., eds.). RNA Technologies 411-427, (2012) ISBN: 978-3-642-27426-8 DOI: 10.1007/978-3-642-27426-8_16

The hammerhead ribozyme, a small catalytic motif that promotes self-cleavage of the RNAs in which it is found naturally embedded, can be manipulated to recognize and cleave specifically in trans other RNAs in the presence of Mg2+. To be really effective, hammerheads need to operate at the low concentration of Mg2+ existing in vivo. Evidence has been gathered along the last years showing that tertiary stabilizing motifs (TSMs), particularly interactions between peripheral loops, are critical for the catalytic activity of hammerheads at physiological levels of Mg2+. These TSMs, in two alternative formats, have been incorporated into a new generation of more efficient trans-cleaving hammerheads, some of which are active in vitro and in planta when targeted against the highly structured RNA of a viroid (a small plant pathogen). This strategy has potential to confer protection against other RNA replicons, like RNA viruses infecting plants and animals.
Bücher und Buchkapitel

Vaira, A. M.; Gago-Zachert, S.; Garcia, M. L.; Guerri, J.; Hammond, J.; Milne, R. G.; Moreno, P.; Morikawa, T.; Natsuaki, T.; Navarro, J. A.; Pallas, V.; Torok, V.; Verbeek, M.; Vetten, H. J. Family - Ophioviridae (King, A. M. Q., et al., eds.). 743-748, (2012) ISBN: 978-0-12-384684-6 DOI: 10.1016/B978-0-12-384684-6.00060-4

This chapter focuses on Ophioviridae family whose sole member genus is Ophiovirus. The member species of the genus include Citrus psorosis virus (CPsV), Freesia sneak virus(FreSV), Lettuce ring necrosis virus (LRNV), and Mirafiori lettuce big-vein virus (MiLBVV).The single stranded negative/possibly ambisense RNA genome is divided into 3–4 segments, each of which is encapsidated in a single coat protein (43–50 kDa) forming filamentous virions of about 3 nm in diameter, in shape of kinked or probably internally coiled circles of at least two different contour lengths. Ophioviruses can be mechanically transmitted to a limited range of test plants, inducing local lesions and systemic mottle. The natural hosts of CPsV, ranunculus white mottle virus (RWMV), MiLBVV, and LRNV are dicotyledonous plants of widely differing taxonomy. CPsV has a wide geographical distribution in citrus in the Americas, in the Mediterranean and in New Zealand. FreSV has been reported in two species of the family Ranunculacae from Northern Italy, and in lettuce in France and Germany. Tulip mild mottle mosaic virus (TMMMV) has been reported in tulips in Japan. LRNV is closely associated with lettuce ring necrosis disease in The Netherlands, Belgium, and France, and FreSV has been reported in Europe, Africa, North America and New Zealand.
IPB Mainnav Search