zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Krägeloh, T.; Cavalleri, J. M. V.; Ziegler, J.; Sander, J.; Terhardt, M.; Breves, G.; Cehak, A. Identification of hypoglycin A binding adsorbents as potential preventive measures in co-grazers of atypical myopathy affected horses Equine Vet J 50, 220-227, (2018) DOI: 10.1111/evj.12723

BackgroundIntestinal absorption of hypoglycin A (HGA) and its metabolism are considered major prerequisites for atypical myopathy (AM). The increasing incidence and the high mortality rate of AM urgently necessitate new therapeutic and/or preventative approaches.ObjectivesTo identify a substance for oral administration capable of binding HGA in the intestinal lumen and effectively reducing the intestinal absorption of the toxin.Study designExperimental in vitro study.MethodsSubstances commonly used in equine practice (activated charcoal composition, di‐tri‐octahedral smectite, mineral oil and activated charcoal) were tested for their binding capacity for HGA using an in vitro incubation method. The substance most effective in binding HGA was subsequently tested for its potential to reduce intestinal HGA absorption. Jejunal tissues of 6 horses were incubated in Ussing chambers to determine mucosal uptake, tissue accumulation, and serosal release of HGA in the presence and absence of the target substance. Potential intestinal metabolism in methylenecyclopropyl acetic acid (MCPA)‐conjugates was investigated by analysing their concentrations in samples from the Ussing chambers.ResultsActivated charcoal composition and activated charcoal were identified as potent HGA binding substances with dose and pH dependent binding capacity. There was no evidence of intestinal HGA metabolism.Main limitationsBinding capacity of adsorbents was tested in vitro using aqueous solutions, and in vivo factors such as transit time and composition of intestinal content, may affect adsorption capacity after oral administration.ConclusionsFor the first time, this study identifies substances capable of reducing HGA intestinal absorption. This might have major implications as a preventive measure in cograzers of AM affected horses but also in horses at an early stage of intoxication.
Bücher und Buchkapitel

Hellmuth, A.; Calderón Villalobos, L. I. A. Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors (Lois, L. M.; Matthiesen, R. ). Meth. Mol. Biol 1450, 23-34, (2016) ISBN: 978-1-4939-3757-8 DOI: 10.1007/978-1-4939-3759-2_3

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ′ ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (K i) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.
Publikation

Calderón Villalobos, L.I.; Tan, X.; Zheng, N.; Estelle, M. Auxin perception - structural insights CSH Perspect. Biol 2(7), (2010)

The identity of the auxin receptor(s) and the mechanism of auxin perception has been a subject of intense interest since the discovery of auxin almost a century ago. The development of genetic approaches to the study of plant hormone signaling led to the discovery that auxin acts by promoting degradation of transcriptional repressors called Aux/IAA proteins. This process requires a ubiquitin protein ligase (E3) called SCFTIR1 and related SCF complexes. Surprisingly, auxin works by directly binding to TIR1, the F-box protein subunit of this SCF. Structural studies demonstrate that auxin acts like a molecular glue, to stabilize the interaction between TIR1 and the Aux/IAA substrate. These exciting results solve an old problem in plant biology and reveal new mechanisms for E3 regulation and hormone perception.
IPB Mainnav Search