zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Bücher und Buchkapitel

Hellmuth, A.; Calderón Villalobos, L. I. A. Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors (Lois, L. M.; Matthiesen, R. ). Meth. Mol. Biol 1450, 23-34, (2016) ISBN: 978-1-4939-3757-8 DOI: 10.1007/978-1-4939-3759-2_3

In receptor–ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D ′ ) for the formation of a ternary TIR1–auxin–AUX/IAA complex. Also, we show how to determine the inhibitory constant (K i) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor.
Publikation

Flores, R.; Gago-Zachert, S.; Serra, P.; Sanjuán, R.; Elena, S. F. Viroids: Survivors from the RNA World? Annual Rev Microbiol 68, 395 - 414, (2014) DOI: 10.1146/annurev-micro-091313-103416

Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario—the so-called RNA world—existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G+ C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
IPB Mainnav Search