zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Bochnia, M.; Scheidemann, W.; Ziegler, J.; Sander, J.; Vollstedt, S.; Glatter, M.; Janzen, N.; Terhardt, M.; Zeyner, A. Predictive value of hypoglycin A and methylencyclopropylacetic acid conjugates in a horse with atypical myopathy in comparison to its cograzing partners Equine Vet Educ 30, 24-28, (2018) DOI: 10.1111/eve.12596

Hypoglycin A (HGA) was detected in blood and urine of a horse suffering from atypical myopathy (AM; Day 2, serum, 8290 μg/l; urine: Day 1, 574, Day 2, 742 μg/l) and in its cograzing partners with a high variability (46–1570 μg/l serum). Over the period of disease, the level of the toxic metabolites (methylencyclopropylacetic acid [MCPA]-conjugates) increased in body fluids of the AM horse (MCPA-carnitine: Day 2, 0.246, Day 3, 0.581 μmol/l serum; MCPA-carnitine: Day 2, 0.621, Day 3, 0.884 μmol/mmol creatinine in urine) and HGA decreased rapidly (Day 3, 2430 μg/l serum). In cograzing horses MCPA-conjugates were not detected. HGA in seeds ranged from 268 to 367 μg/g. Although HGA was present in body fluids of healthy cograzing horses, MCPA-conjugates were not detectable, in contrast to the AM horse. Therefore, increasing concentrations of MCPA-conjugates are supposed to be linked with the onset of AM and both parameters seem to indicate the clinical stage of disease. However, detection of HGA in body fluids of cograzing horses might be a promising step in preventing the disease.
Publikation

Jablonická, V.; Ziegler, J.; Vatehová, Z.; Lišková, D.; Heilmann, I.; Obložinský, M.; Heilmann, M. Inhibition of phospholipases influences the metabolism of wound-induced benzylisoquinoline alkaloids in Papaver somniferum L. J Plant Physiol 223, 1-8, (2018) DOI: 10.1016/j.jplph.2018.01.007

Benzylisoquinoline alkaloids (BIAs) are important secondary plant metabolites and include medicinally relevant drugs, such as morphine or codeine. As the de novo synthesis of BIA backbones is (still) unfeasible, to date the opium poppy plant Papaver somniferum L. represents the main source of BIAs. The formation of BIAs is induced in poppy plants by stress conditions, such as wounding or salt treatment; however, the details about regulatory processes controlling BIA formation in opium poppy are not well studied. Environmental stresses, such as wounding or salinization, are transduced in plants by phospholipid-based signaling pathways, which involve different classes of phospholipases. Here we investigate whether pharmacological inhibition of phospholipase A2 (PLA2, inhibited by aristolochic acid (AA)) or phospholipase D (PLD; inhibited by 5-fluoro-2-indolyl des-chlorohalopemide (FIPI)) in poppy plants influences wound-induced BIA accumulation and the expression of key biosynthetic genes. We show that inhibition of PLA2 results in increased morphinan biosynthesis concomitant with reduced production of BIAs of the papaverine branch, whereas inhibition of PLD results in increased production of BIAs of the noscapine branch. The data suggest that phospholipid-dependent signaling pathways contribute to the activation of morphine biosynthesis at the expense of the production of other BIAs in poppy plants. A better understanding of the effectors and the principles of regulation of alkaloid biosynthesis might be the basis for the future genetic modification of opium poppy to optimize BIA production.
Publikation

Wasternack, C.; Strnad, M. Jasmonates: News on Occurrence, Biosynthesis, Metabolism and Action of an Ancient Group of Signaling Compounds Int J Mol Sci 19, 2539, (2018) DOI: 10.3390/ijms19092539

Jasmonic acid (JA) and its related derivatives are ubiquitously occurring compounds of land plants acting in numerous stress responses and development. Recent studies on evolution of JA and other oxylipins indicated conserved biosynthesis. JA formation is initiated by oxygenation of α-linolenic acid (α-LeA, 18:3) or 16:3 fatty acid of chloroplast membranes leading to 12-oxo-phytodienoic acid (OPDA) as intermediate compound, but in Marchantiapolymorpha and Physcomitrellapatens, OPDA and some of its derivatives are final products active in a conserved signaling pathway. JA formation and its metabolic conversion take place in chloroplasts, peroxisomes and cytosol, respectively. Metabolites of JA are formed in 12 different pathways leading to active, inactive and partially active compounds. The isoleucine conjugate of JA (JA-Ile) is the ligand of the receptor component COI1 in vascular plants, whereas in the bryophyte M. polymorpha COI1 perceives an OPDA derivative indicating its functionally conserved activity. JA-induced gene expressions in the numerous biotic and abiotic stress responses and development are initiated in a well-studied complex regulation by homeostasis of transcription factors functioning as repressors and activators.
Publikation

Strehmel, N.; Mönchgesang, S.; Herklotz, S.; Krüger, S.; Ziegler, J.; Scheel, D. Piriformospora indica Stimulates Root Metabolism of Arabidopsis thaliana Int J Mol Sci 17, 1091, (2016) DOI: 10.3390/ijms17071091

Piriformospora indica is a root-colonizing fungus, which interacts with a variety of plants including Arabidopsis thaliana. This interaction has been considered as mutualistic leading to growth promotion of the host. So far, only indolic glucosinolates and phytohormones have been identified as key players. In a comprehensive non-targeted metabolite profiling study, we analyzed Arabidopsis thaliana’s roots, root exudates, and leaves of inoculated and non-inoculated plants by ultra performance liquid chromatography/electrospray ionization quadrupole-time-of-flight mass spectrometry (UPLC/(ESI)-QTOFMS) and gas chromatography/electron ionization quadrupole mass spectrometry (GC/EI-QMS), and identified further biomarkers. Among them, the concentration of nucleosides, dipeptides, oligolignols, and glucosinolate degradation products was affected in the exudates. In the root profiles, nearly all metabolite levels increased upon co-cultivation, like carbohydrates, organic acids, amino acids, glucosinolates, oligolignols, and flavonoids. In the leaf profiles, we detected by far less significant changes. We only observed an increased concentration of organic acids, carbohydrates, ascorbate, glucosinolates and hydroxycinnamic acids, and a decreased concentration of nitrogen-rich amino acids in inoculated plants. These findings contribute to the understanding of symbiotic interactions between plant roots and fungi of the order of Sebacinales and are a valid source for follow-up mechanistic studies, because these symbioses are particular and clearly different from interactions of roots with mycorrhizal fungi or dark septate endophytes 
IPB Mainnav Search