zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Müller, J.; Toev, T.; Heisters, M.; Teller, J.; Moore, K. L.; Hause, G.; Dinesh, D. C.; Bürstenbinder, K.; Abel, S. Iron-Dependent Callose Deposition Adjusts Root Meristem Maintenance to Phosphate Availability Devel Cell 33, 216–230, (2015) DOI: 10.1016/j.devcel.2015.02.007

Plant root development is informed by numerous edaphic cues. Phosphate (Pi) availability impacts the root system architecture by adjusting meristem activity. However, the sensory mechanisms monitoring external Pi status are elusive. Two functionally interacting Arabidopsis genes, LPR1 (ferroxidase) and PDR2 (P5-type ATPase), are key players in root Pi sensing, which is modified by iron (Fe) availability. We show that the LPR1-PDR2 module facilitates, upon Pi limitation, cell-specific apoplastic Fe and callose deposition in the meristem and elongation zone of primary roots. Expression of cell-wall-targeted LPR1 determines the sites of Fe accumulation as well as callose production, which interferes with symplastic communication in the stem cell niche, as demonstrated by impaired SHORT-ROOT movement. Antagonistic interactions of Pi and Fe availability control primary root growth via meristem-specific callose formation, likely triggered by LPR1-dependent redox signaling. Our results link callose-regulated cell-to-cell signaling in root meristems to the perception of an abiotic cue
Publikation

Wasternack, C.; Kombrink, E. Jasmonates: Structural Requirements for Lipid-Derived Signals Active in Plant Stress Responses and Development ACS Chem Biol 5, 63-77, (2010) DOI: 10.1021/cb900269u

Jasmonates are lipid-derived signals that mediate plant stress responses and development processes. Enzymes participating in biosynthesis of jasmonic acid (JA) (1, 2) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants of Arabidopsis and tomato have helped to define the pathway for synthesis of jasmonoyl-isoleucine (JA-Ile), the active form of JA, and to identify the F-box protein COI1 as central regulatory unit. However, details of the molecular mechanism of JA signaling have only recently been unraveled by the discovery of JAZ proteins that function in transcriptional repression. The emerging picture of JA perception and signaling cascade implies the SCFCOI1 complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S-proteasome pathway, thereby allowing the transcription factor MYC2 to activate gene expression. The fact that only one particular stereoisomer, (+)-7-iso-JA-l-Ile (4), shows high biological activity suggests that epimerization between active and inactive diastereomers could be a mechanism for turning JA signaling on or off. The recent demonstration that COI1 directly binds (+)-7-iso-JA-l-Ile (4) and thus functions as JA receptor revealed that formation of the ternary complex COI1-JA-Ile-JAZ is an ordered process. The pronounced differences in biological activity of JA stereoisomers also imply strict stereospecific control of product formation along the JA biosynthetic pathway. The pathway of JA biosynthesis has been unraveled, and most of the participating enzymes are well-characterized. For key enzymes of JA biosynthesis the crystal structures have been established, allowing insight into the mechanisms of catalysis and modes of substrate binding that lead to formation of stereospecific products.
Publikation

Ludwig-Müller, J.; Denk, K.; Cohen, J. D.; Quint, M. An Inhibitor of Tryptophan-Dependent Biosynthesis of Indole-3-Acetic Acid Alters Seedling Development in Arabidopsis J Plant Growth Regul 29, 242-248, (2010) DOI: 10.1007/s00344-009-9128-1

Although polar transport and the TIR1-dependent signaling pathway of the plant hormone auxin/indole-3-acetic acid (IAA) are well characterized, understanding of the biosynthetic pathway(s) leading to the production of IAA is still limited. Genetic dissection of IAA biosynthetic pathways has been complicated by the metabolic redundancy caused by the apparent existence of several parallel biosynthetic routes leading to IAA production. Valuable complementary tools for genetic as well as biochemical analysis of auxin biosynthesis would be molecular inhibitors capable of acting in vivo on specific or general components of the pathway(s), which unfortunately have been lacking. Several indole derivatives have been previously identified to inhibit tryptophan-dependent IAA biosynthesis in an in vitro system from maize endosperm. We examined the effect of one of them, 6-fluoroindole, on seedling development of Arabidopsis thaliana and tested its ability to inhibit IAA biosynthesis in feeding experiments in vivo. We demonstrated a correlation of severe developmental defects or growth retardation caused by 6-fluoroindole with significant downregulation of de novo synthesized IAA levels, derived from the stable isotope-labeled tryptophan pool, upon treatment. Hence, 6-fluoroindole shows important features of an inhibitor of tryptophan-dependent IAA biosynthesis both in vitro and in vivo and thus may find use as a promising molecular tool for the identification of novel components of the auxin biosynthetic pathway(s).
Publikation

Berger, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I. Enzymatic and non-enzymatic lipid peroxidation in leaf development Biochim. Biophys. Acta 1533, 266-276, (2001)

0
IPB Mainnav Search