zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 13.

Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219, 233-242, (2004) DOI: 10.1007/s00425-004-1227-4

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publikation

Groß, N.; Wasternack, C.; Köck, M.; Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus) Phytochemistry 65, 1343-1350, (2004) DOI: 10.1016/j.phytochem.2004.04.036

Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.RNaseLE expression was analyzed by pharmacological studies of different tomato lines and upon wounding of leaves. The gene is only locally activated via a new type of wound-induced signaling pathway in a jasmonate/systemin-independent manner.
Publikation

Stenzel, I.; Ziethe, K.; Schurath, J.; Hertel, S. C.; Bosse, D.; Köck, M.; Differential expression of the LePS2 phosphatase gene family in response to phosphate availability, pathogen infection and during development Physiol. Plant. 118, 138-146, (2003) DOI: 10.1034/j.1399-3054.2003.00091.x

In this study, we report the cloning of the three‐member LePS2 gene family of acid phosphatases via subtractive screening of a cDNA library of Pi‐starved cultivated tomato cells (Lycopersicon esculentum Mill. cv. Lukullus). As members of the plant Pi‐starvation response, LePS2 genes were tightly regulated in cultivated cells and tomato seedlings by Pi availability. The LePS2 enzymes which are most likely expressed in the cytoplasma could be involved in processes that are accompanied by degradation of phosphorylated organic substrates. Independently from exogenous phosphate supply LePS2 expression was detected in tomato endosperm during germination. LePS2 genes were differentially induced after infection with the bacterial pathogen Pseudomonas syringae and in the early stages of flower development. Using RT–PCR it was found that the gene LePS2B was the most abundant transcript in phosphate‐depleted cells, but a reduced expression was determined in floral buds and it was not found during pathogen interaction. In this respect, it is interesting that the promoter sequences of the LePS2 genes are also divergent. LePS2 gene products may have functions in developmental processes which are restricted to distinct plant tissues or cell types.
Bücher und Buchkapitel

Abel, S.; Köck, M.; Secretory Acid Ribonucleases from Tomato, Lycopersicon esculentum Mill. Methods Enzymol. 341, 351-368, (2001) DOI: 10.1016/S0076-6879(01)41163-3

0
Publikation

Morgan, K. E.; Zarembinski, T. I.; Theologis, A.; Abel, S.; Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins FEBS Lett. 454, 283-287, (1999) DOI: 10.1016/S0014-5793(99)00819-4

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.
Publikation

Wong, L. M.; Abel, S.; Shen, N.; de la Foata, M.; Mall, Y.; Theologis, A.; Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development Plant J. 9, 587-599, (1996) DOI: 10.1046/j.1365-313X.1996.9050587.x

The plant growth hormone auxin typified by indoleacetic acid (IAA) transcriptionally activates early genes in pea, PS‐IAA4/5 and PS‐IAA6 , that are members of a multigene family encoding short‐lived nuclear proteins. To gain first insight into the biological role of PS‐IAA4/5 and PSIAA6 , promoter‐β‐glucuronidase (GUS) gene fusions were constructed and their expression during early development of transgenic tobacco seedlings was examined. The comparative analysis reveals spatial and temporal expression patterns of both genes that correlate with cells, tissues, and developmental processes known to be affected by auxin. GUS activity in seedlings of both transgenic lines is located in the root meristem, sites of lateral root initiation and in hypocotyls undergoing rapid elongation. In addition, mutually exclusive cell‐specific expression is evident. For instance, PS‐IAA4/5—GUS but not PS‐IAA6—GUS is expressed in root vascular tissue and in guard cells, whereas only PS‐IAA6—GUS activity is detectable in glandular trichomes and redistributes to the elongating side of the hypocotyl upon gravitropic stimulation. Expression of PS‐IAA4/5 and PS‐IAA6 in elongating, dividing, and differentiating cell types indicates multiple functions during development. The common and yet distinct activity patterns of both genes suggest a combinatorial code of spatio‐temporal co‐expression of the various PS‐IAA4/ 5‐like gene family members in plant development that may mediate cell‐specific responses to auxin.
Publikation

Abel, S.; Theologis, A.; Early Genes and Auxin Action Plant Physiol. 111, 9-17, (1996) DOI: 10.1104/pp.111.1.9

0
Publikation

Abel, S.; Ballas, N.; Wong, L.-M.; Theologis, A.; DNA elements responsive to auxin BioEssays 18, 647-654, (1996) DOI: 10.1002/bies.950180808

Genes induced by the plant hormone auxin are probably involved in the execution of vital cellular functions and developmental processes. Experimental approaches designed to elucidate the molecular mechanisms of auxin action have focused on auxin perception, genetic dissection of the signaling apparatus and specific gene activation. Auxin‐responsive promoter elements of early genes provide molecular tools for probing auxin signaling in reverse. Functional analysis of several auxin‐specific promoters of unrelated early genes suggests combinatorial utilization of both conserved and variable elements. These elements are arranged into autonomous domains and the combination of such modules generates uniquely composed promoters. Modular promoters allow for auxin‐mediated transcriptional responses to be revealed in a tissue‐ and development‐specific manner.
Publikation

Abel, S.; Nguyen, M. D.; Theologis, A.; The PS-IAA4/5-like Family of Early Auxin-inducible mRNAs in Arabidopsis thaliana J. Mol. Biol. 251, 533-549, (1995) DOI: 10.1006/jmbi.1995.0454

The plant hormone auxin transcriptionally activates early genes. We have isolated a 14-member family of DNA sequences complementary to indoleacetic acid (IAA)-inducible transcripts inArabidopsis thaliana. The corresponding genes, IAA1 and IAA14, are homologs of PS-1AA4/5 and PS-IAA6 from pea, AUX22 and AUX28 from soybean, ARG3 and ARG4from mungbean, and AtAux2-11 and AtAux2-27 from Arabidopsis. The members of the family are differentially expressed in mature Arabidopsis plants. Characterization of IAA gene expression in etiolated seedlings demonstrates specificity for auxin inducibility. The response of most family members to IAA is rapid (within 4 to 30 minutes) and insensitive to cyclohexamide. Cyclohexamide alone induces all the early genes. Auxin-induction of two late genes, IAA7 and IAA8, is inhibited by cyclohexamide, indicating requirement of protein synthesis for their activation. All IAA genes display a biphasic dose response that is optimal at 10 μM IAA. However, individual genes respond differentially between 10 nM and 5μM IAA. Expression of all genes is defective in the Arabidopsis auxin-resistant mutant lines axr1, axr2, and aux1.The encoded polypeptides share four conserved domains, and seven invariant residues in the intervening regions. The spaces vary considerably in length, rendering the calculated molecular mass of IAA proteins to range from 19 kDa to 36 kDa. Overall sequence identity between members of the family is highly variable (36 to 87%). Their most significant structural features are functional nuclear transport signals, and a putative βαα-fold whose modeled three dimensional structure appears to be compatible with the prokaryotic β-ribbon DNA recognition motif. The data suggest that auxin induces in a differential and hierarchical fashion a large family of early genes that encode a structurally diverse class of nuclear proteins. These proteins are proposed to mediate tissue-specific and cell-type restricted responses to the hormone during plant growth and development.
IPB Mainnav Search