zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 14.

Publikation

Ried, M. K.; Antolín-Llovera, M.; Parniske, M.; Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases eLife 3, e03891, (2014) DOI: 10.7554/eLife.03891

Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development.
Publikation

Antolín-Llovera, M.; Petutsching, E. K.; Ried, M. K.; Lipka, V.; Nürnberger, T.; Robatzek, S.; Parniske, M.; Knowing your friends and foes - plant receptor-like kinases as initiators of symbiosis or defence New Phytol. 204, 791-802, (2014) DOI: 10.1111/nph.13117

The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane‐localized receptor complexes. A critical step in their activation is ligand‐induced homo‐ or hetero‐oligomerization of leucine‐rich repeat (LRR)‐ and/or lysin motif (LysM) receptor‐like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen‐associated molecular patterns (PAMPs), including the bacterial flagellin‐derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont‐derived (lipo)‐chitooligosaccharides. The structurally related chitin‐oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM‐RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin‐like domain (MLD)‐LRR‐RLK Symbiosis Receptor‐like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR‐ and LysM‐mediated signalling, the involvement of MLD‐LRR‐RLKs in symbiosis and defence, and the role of endocytosis in RLK function.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Parniske, M.; Cleavage of the SYMBIOSIS RECEPTOR-LIKE KINASE Ectodomain Promotes Complex Formation with Nod Factor Receptor 5 Curr. Biol. 24, 422-427, (2014) DOI: 10.1016/j.cub.2013.12.053

Plants form root symbioses with fungi and bacteria to improve their nutrient supply. SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for phosphate-acquiring arbuscular mycorrhiza, as well as for the nitrogen-fixing root nodule symbiosis of legumes [1] and actinorhizal plants [2, 3], but its precise function was completely unclear. Here we show that the extracytoplasmic region of SYMRK, which comprises three leucine-rich repeats (LRRs) and a malectin-like domain (MLD) related to a carbohydrate-binding protein from Xenopus laevis [4], is cleaved to release the MLD in the absence of symbiotic stimulation. A conserved sequence motif—GDPC—that connects the MLD to the LRRs is required for MLD release. We discovered that Nod factor receptor 5 (NFR5) [5, 6, 7, 8] forms a complex with the SYMRK version that remains after MLD release (SYMRK-ΔMLD). SYMRK-ΔMLD outcompeted full-length SYMRK for NFR5 interaction, indicating that the MLD negatively interferes with complex formation. SYMRK-ΔMLD is present at lower amounts than MLD, suggesting rapid degradation after MLD release. A deletion of the entire extracytoplasmic region increased protein abundance, suggesting that the LRR region promotes degradation. Curiously, this deletion led to excessive infection thread formation, highlighting the importance of fine-tuned regulation of SYMRK by its ectodomain.
Publikation

Antolín-Llovera, M.; Ried, M. K.; Binder, A.; Parniske, M.; Receptor Kinase Signaling Pathways in Plant-Microbe Interactions Annu. Rev. Phytopathol. 50, 451-473, (2012) DOI: 10.1146/annurev-phyto-081211-173002

Plant receptor-like kinases (RLKs) function in diverse signaling pathways, including the responses to microbial signals in symbiosis and defense. This versatility is achieved with a common overall structure: an extracytoplasmic domain (ectodomain) and an intracellular protein kinase domain involved in downstream signal transduction. Various surfaces of the leucine-rich repeat (LRR) ectodomain superstructure are utilized for interaction with the cognate ligand in both plant and animal receptors. RLKs with lysin-motif (LysM) ectodomains confer recognitional specificity toward N-acetylglucosamine-containing signaling molecules, such as chitin, peptidoglycan (PGN), and rhizobial nodulation factor (NF), that induce immune or symbiotic responses. Signaling downstream of RLKs does not follow a single pattern; instead, the detailed analysis of brassinosteroid (BR) signaling, innate immunity, and symbiosis revealed at least three largely nonoverlapping pathways. In this review, we focus on RLKs involved in plant-microbe interactions and contrast the signaling pathways leading to symbiosis and defense.
Publikation

Den Herder, G.; Yoshida, S.; Antolín-Llovera, M.; Ried, M. K.; Parniske, M.; Lotus japonicus E3 Ligase SEVEN IN ABSENTIA4 Destabilizes the Symbiosis Receptor-Like Kinase SYMRK and Negatively Regulates Rhizobial Infection Plant Cell 24, 1691-1707, (2012) DOI: 10.1105/tpc.110.082248

The Lotus japonicus SYMBIOSIS RECEPTOR-LIKE KINASE (SYMRK) is required for symbiotic signal transduction upon stimulation of root cells by microbial signaling molecules. Here, we identified members of the SEVEN IN ABSENTIA (SINA) E3 ubiquitin-ligase family as SYMRK interactors and confirmed their predicted ubiquitin-ligase activity. In Nicotiana benthamiana leaves, SYMRK–yellow fluorescent protein was localized at the plasma membrane, and interaction with SINAs, as determined by bimolecular fluorescence complementation, was observed in small punctae at the cytosolic interface of the plasma membrane. Moreover, fluorescence-tagged SINA4 partially colocalized with SYMRK and caused SYMRK relocalization as well as disappearance of SYMRK from the plasma membrane. Neither the localization nor the abundance of Nod-factor receptor1 was altered by the presence of SINA4. SINA4 was transcriptionally upregulated during root symbiosis, and rhizobia inoculated roots ectopically expressing SINA4 showed reduced SYMRK protein levels. In accordance with a negative regulatory role in symbiosis, infection thread development was impaired upon ectopic expression of SINA4. Our results implicate SINA4 E3 ubiquitin ligase in the turnover of SYMRK and provide a conceptual mechanism for its symbiosis-appropriate spatio-temporal containment.
Publikation

Abel, S.; Theologis, A.; Odyssey of Auxin Cold Spring Harb. Perspect. Biol. 2, a004572, (2010) DOI: 10.1101/cshperspect.a004572

The history of plant biology is inexorably intertwined with the conception and discovery of auxin, followed by the many decades of research to comprehend its action during growth and development. Growth responses to auxin are complex and require the coordination of auxin production, transport, and perception. In this overview of past auxin research, we limit our discourse to the mechanism of auxin action. We attempt to trace the almost epic voyage from the birth of the hormonal concept in plants to the recent crystallographic studies that resolved the TIR1-auxin receptor complex, the first structural model of a plant hormone receptor. The century-long endeavor is a beautiful illustration of the power of scientific reasoning and human intuition, but it also brings to light the fact that decisive progress is made when new technologies emerge and disciplines unite.
Publikation

Morgan, K. E.; Zarembinski, T. I.; Theologis, A.; Abel, S.; Biochemical characterization of recombinant polypeptides corresponding to the predicted βαα fold in Aux/IAA proteins FEBS Lett. 454, 283-287, (1999) DOI: 10.1016/S0014-5793(99)00819-4

The plant hormone indoleacetic acid (IAA or auxin) transcriptionally activates a select set of early genes. The Auxl IAA class of early auxin-responsive genes encodes a large family of short-lived, nuclear proteins. Aux/IAA polypeptides homo-and heterodimerize, and interact with auxin-response transcription factors (ARFs) via C-terminal regions conserved in both protein families. This shared region contains a predicted βαα motif similar to the prokaryotic β-Ribbon DNA binding domain, which mediates both protein dimerization and DNA recognition. Here, we show by circular dichroism spectroscopy and by chemical cross-linking experiments that recombinant peptides corresponding to the predicted βαα region of three Aux/IAA proteins from Arabidopsis thaliana contain substantial α-helical secondary structure and undergo homo- and heterotypic interactions in vitro. Our results indicate a similar biochemical function of the plant βαα domain and suggest that the βαα fold plays an important role in mediating combinatorial interactions of Aux/IAA and ARF proteins to specifically regulate secondary gene expression in response to auxin.
Publikation

Wong, L. M.; Abel, S.; Shen, N.; de la Foata, M.; Mall, Y.; Theologis, A.; Differential activation of the primary auxin response genes, PS-IAA4/5 and PS-IAA6, during early plant development Plant J. 9, 587-599, (1996) DOI: 10.1046/j.1365-313X.1996.9050587.x

The plant growth hormone auxin typified by indoleacetic acid (IAA) transcriptionally activates early genes in pea, PS‐IAA4/5 and PS‐IAA6 , that are members of a multigene family encoding short‐lived nuclear proteins. To gain first insight into the biological role of PS‐IAA4/5 and PSIAA6 , promoter‐β‐glucuronidase (GUS) gene fusions were constructed and their expression during early development of transgenic tobacco seedlings was examined. The comparative analysis reveals spatial and temporal expression patterns of both genes that correlate with cells, tissues, and developmental processes known to be affected by auxin. GUS activity in seedlings of both transgenic lines is located in the root meristem, sites of lateral root initiation and in hypocotyls undergoing rapid elongation. In addition, mutually exclusive cell‐specific expression is evident. For instance, PS‐IAA4/5—GUS but not PS‐IAA6—GUS is expressed in root vascular tissue and in guard cells, whereas only PS‐IAA6—GUS activity is detectable in glandular trichomes and redistributes to the elongating side of the hypocotyl upon gravitropic stimulation. Expression of PS‐IAA4/5 and PS‐IAA6 in elongating, dividing, and differentiating cell types indicates multiple functions during development. The common and yet distinct activity patterns of both genes suggest a combinatorial code of spatio‐temporal co‐expression of the various PS‐IAA4/ 5‐like gene family members in plant development that may mediate cell‐specific responses to auxin.
Publikation

Abel, S.; Theologis, A.; Early Genes and Auxin Action Plant Physiol. 111, 9-17, (1996) DOI: 10.1104/pp.111.1.9

0
Publikation

Abel, S.; Ballas, N.; Wong, L.-M.; Theologis, A.; DNA elements responsive to auxin BioEssays 18, 647-654, (1996) DOI: 10.1002/bies.950180808

Genes induced by the plant hormone auxin are probably involved in the execution of vital cellular functions and developmental processes. Experimental approaches designed to elucidate the molecular mechanisms of auxin action have focused on auxin perception, genetic dissection of the signaling apparatus and specific gene activation. Auxin‐responsive promoter elements of early genes provide molecular tools for probing auxin signaling in reverse. Functional analysis of several auxin‐specific promoters of unrelated early genes suggests combinatorial utilization of both conserved and variable elements. These elements are arranged into autonomous domains and the combination of such modules generates uniquely composed promoters. Modular promoters allow for auxin‐mediated transcriptional responses to be revealed in a tissue‐ and development‐specific manner.
IPB Mainnav Search