zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Ticconi, C. A.; Delatorre, C. A.; Lahner, B.; Salt, D. E.; Abel, S.; Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development Plant J. 37, 801-814, (2004) DOI: 10.1111/j.1365-313x.2004.02005.x

Plants have evolved complex strategies to maintain phosphate (Pi) homeostasis and to maximize Pi acquisition when the macronutrient is limiting. Adjustment of root system architecture via changes in meristem initiation and activity is integral to the acclimation process. However, the mechanisms that monitor external Pi status and interpret the nutritional signal remain to be elucidated. Here, we present evidence that the Pi deficiency response , pdr2 , mutation disrupts local Pi sensing. The sensitivity and amplitude of metabolic Pi‐starvation responses, such as Pi‐responsive gene expression or accumulation of anthocyanins and starch, are enhanced in pdr2 seedlings. However, the most conspicuous alteration of pdr2 is a conditional short‐root phenotype that is specific for Pi deficiency and caused by selective inhibition of root cell division followed by cell death below a threshold concentration of about 0.1 mm external Pi. Measurements of general Pi uptake and of total phosphorus (P) in root tips exclude a defect in high‐affinity Pi acquisition. Rescue of root meristem activity in Pi‐starved pdr2 by phosphite (Phi), a non‐metabolizable Pi analog, and divided‐root experiments suggest that pdr2 disrupts sensing of low external Pi availability. Thus, PDR2 is proposed to function at a Pi‐sensitive checkpoint in root development, which monitors environmental Pi status, maintains and fine‐tunes meristematic activity, and finally adjusts root system architecture to maximize Pi acquisition.
Publikation

Stenzel, I.; Hause, B.; Maucher, H.; Pitzschke, A.; Miersch, O.; Ziegler, J.; Ryan, C. A.; Wasternack, C.; Allene oxide cyclase dependence of the wound response and vascular bundle-specific generation of jasmonates in tomato - amplification in wound signalling Plant J. 33, 577-589, (2003) DOI: 10.1046/j.1365-313X.2003.01647.x

The allene oxide cyclase (AOC)‐catalyzed step in jasmonate (JA) biosynthesis is important in the wound response of tomato. As shown by treatments with systemin and its inactive analog, and by analysis of 35S::prosysteminsense and 35S::prosysteminantisense plants, the AOC seems to be activated by systemin (and JA) leading to elevated formation of JA. Data are presented on the local wound response following activation of AOC and generation of JA, both in vascular bundles. The tissue‐specific occurrence of AOC protein and generation of JA is kept upon wounding or other stresses, but is compromised in 35S::AOCsense plants, whereas 35S::AOCantisense plants exhibited residual AOC expression, a less than 10% rise in JA, and no detectable expression of wound response genes. The (i) activation of systemin‐dependent AOC and JA biosynthesis occurring only upon substrate generation, (ii) the tissue‐specific occurrence of AOC in vascular bundles, where the prosystemin gene is expressed, and (iii) the tissue‐specific generation of JA suggest an amplification in the wound response of tomato leaves allowing local and rapid defense responses.
IPB Mainnav Search