zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 19.

Preprints

Trenner, J.; Poeschl, Y.; Grau, J.; Gogol-Döring, A.; Quint, M.; Delker, C.; Auxin-induced expression divergence between Arabidopsis species likely originates within the TIR1/AFB-AUX/IAA-ARF module bioRxiv (2016) DOI: 10.1101/038422

Auxin is an essential regulator of plant growth and development and auxin signaling components are conserved among land plants. Yet, a remarkable degree of natural variation in physiological and transcriptional auxin responses has been described among Arabidopsis thaliana accessions. As intra-species comparisons offer only limited genetic variation, we here inspect the variation of auxin responses between A. thaliana and A. lyrata. This approach allowed the identification of conserved auxin response genes including novel genes with potential relevance for auxin biology. Furthermore, promoter divergences were analyzed for putative sources of variation. De novo motif discovery identified novel and variants of known elements with potential relevance for auxin responses, emphasizing the complex, and yet elusive, code of element combinations accounting for the diversity in transcriptional auxin responses. Furthermore, network analysis revealed correlations of inter-species differences in the expression of AUX/IAA gene clusters and classic auxin-related genes. We conclude that variation in general transcriptional and physiological auxin responses may originate substantially from functional or transcriptional variations in the TIR1/AFB, AUX/IAA, and ARF signaling network. In that respect, AUX/IAA gene expression divergence potentially reflects differences in the manner in which different species transduce identical auxin signals into gene expression responses.
Preprints

Drost, H.-G.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I.; Capturing Evolutionary Signatures in Transcriptomes with myTAI bioRxiv (2016) DOI: 10.1101/051565

Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.
Publikation

Floková, K.; Feussner, K.; Herrfurth, C.; Miersch, O.; Mik, V.; Tarkowská, D.; Strnad, M.; Feussner, I.; Wasternack, C.; Novák, O.; A previously undescribed jasmonate compound in flowering Arabidopsis thaliana – The identification of cis-(+)-OPDA-Ile Phytochemistry 122, 230-237, (2016) DOI: 10.1016/j.phytochem.2015.11.012

Jasmonates (JAs) are plant hormones that integrate external stress stimuli with physiological responses. (+)-7-iso-JA-L-Ile is the natural JA ligand of COI1, a component of a known JA receptor. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-(+)-OPDA) has been reported to act independently of COI1 as an essential signal in several stress-induced and developmental processes. Wound-induced increases in the endogenous levels of JA/JA-Ile are accompanied by two to tenfold increases in the concentration of OPDA, but its means of perception and metabolism are unknown. To screen for putative OPDA metabolites, vegetative tissues of flowering Arabidopsis thaliana were extracted with 25% aqueous methanol (v/v), purified by single-step reversed-phase polymer-based solid-phase extraction, and analyzed by high throughput mass spectrometry. This enabled the detection and quantitation of a low abundant OPDA analog of the biologically active (+)-7-iso-JA-L-Ile in plant tissue samples. Levels of the newly identified compound and the related phytohormones JA, JA-Ile and cis-(+)-OPDA were monitored in wounded leaves of flowering Arabidopsis lines (Col-0 and Ws) and compared to the levels observed in Arabidopsis mutants deficient in the biosynthesis of JA (dde2-2, opr3) and JA-Ile (jar1). The observed cis-(+)-OPDA-Ile levels varied widely, raising questions concerning its role in Arabidopsis stress responses.
Publikation

Drost, H.-G.; Bellstädt, J.; Ó'Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H. W. M.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M.; Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development Mol. Biol. Evol. 33, 1158-1163, (2016) DOI: 10.1093/molbev/msw039

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
Publikation

Quint, M.; Delker, C.; Franklin, K. A.; Wigge, P. A.; Halliday, K. J.; van Zanten, M.; Molecular and genetic control of plant thermomorphogenesis Nat. Plants 2, 15190, (2016) DOI: 10.1038/nplants.2015.190

Temperature is a major factor governing the distribution and seasonal behaviour of plants. Being sessile, plants are highly responsive to small differences in temperature and adjust their growth and development accordingly. The suite of morphological and architectural changes induced by high ambient temperatures, below the heat-stress range, is collectively called thermomorphogenesis. Understanding the molecular genetic circuitries underlying thermomorphogenesis is particularly relevant in the context of climate change, as this knowledge will be key to rational breeding for thermo-tolerant crop varieties. Until recently, the fundamental mechanisms of temperature perception and signalling remained unknown. Our understanding of temperature signalling is now progressing, mainly by exploiting the model plant Arabidopsis thaliana. The transcription factor PHYTOCHROME INTERACTING FACTOR 4 (PIF4) has emerged as a critical player in regulating phytohormone levels and their activity. To control thermomorphogenesis, multiple regulatory circuits are in place to modulate PIF4 levels, activity and downstream mechanisms. Thermomorphogenesis is integrally governed by various light signalling pathways, the circadian clock, epigenetic mechanisms and chromatin-level regulation. In this Review, we summarize recent progress in the field and discuss how the emerging knowledge in Arabidopsis may be transferred to relevant crop systems.
Publikation

Arnold, M. D.; Gruber, C.; Floková, K.; Miersch, O.; Strnad, M.; Novák, O.; Wasternack, C.; Hause, B.; The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana PLOS ONE 11, e0162829, (2016) DOI: 10.1371/journal.pone.0162829

Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile.
Publikation

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219, 233-242, (2004) DOI: 10.1007/s00425-004-1227-4

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publikation

Bücking, H.; Förster, H.; Stenzel, I.; Miersch, O.; Hause, B.; Applied jasmonates accumulate extracellularly in tomato, but intracellularly in barley FEBS Lett. 562, 45-50, (2004) DOI: 10.1016/S0014-5793(04)00178-4

Jasmonic acid (JA) and its derivatives are well‐characterized signaling molecules in plant defense and development, but the site of their localization within plant tissue is entirely unknown. To address the question whether applied JA accumulates extracellularly or intracellularly, leaves of tomato and barley were fed with 14C‐labeled JA and the label was localized in cryofixed and lyophilized leaf tissues by microautoradiography. In tomato the radioactivity was detectable within the apoplast, but no label was found within the mesophyll cells. By contrast, in barley leaf tissues, radioactivity was detected within the mesophyll cells suggesting a cellular uptake of exogenously applied JA. JA, applied to leaves of both plants as in the labeling experiments, led in all leaf cells to the expression of JA‐inducible genes indicating that the perception is completed by JA signal transduction.
Publikation

Schüler, G.; Mithöfer, A.; Baldwin, I. T.; BERGER, S.; Ebel, J.; Santos, J. G.; Herrmann, G.; Hölscher, D.; Kramell, R.; Kutchan, T. M.; Maucher, H.; Schneider, B.; Stenzel, I.; Wasternack, C.; Boland, W.; Coronalon: a powerful tool in plant stress physiology FEBS Lett. 563, 17-22, (2004) DOI: 10.1016/S0014-5793(04)00239-X

Coronalon, a synthetic 6‐ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12‐oxo‐phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations. The results obtained showed the induction of (i) defense‐related secondary metabolite accumulation in both cell cultures and plant tissues, (ii) specific abiotic and biotic stress‐related gene expression, and (iii) root growth retardation. The general activity of coronalon in the induction of plant stress responses together with its simple and efficient synthesis suggests that this compound might serve as a valuable tool in the examination of various aspects in plant stress physiology. Moreover, coronalon might become employed in agriculture to elicit plant resistance against various aggressors.
Publikation

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
IPB Mainnav Search