zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 19.

Preprints

Drost, H.-G.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I.; Capturing Evolutionary Signatures in Transcriptomes with myTAI bioRxiv (2016) DOI: 10.1101/051565

Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.
Publikation

Wasternack, C.; Hause, B.; OPDA-Ile – a new JA-Ile-independent signal? Plant Signal Behav. 11, e1253646, (2016) DOI: 10.1080/15592324.2016.1253646

Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.
Publikation

Otto, M.; Naumann, C.; Brandt, W.; Wasternack, C.; Hause, B.; Activity Regulation by Heteromerization of Arabidopsis Allene Oxide Cyclase Family Members Plants 5, 3, (2016) DOI: 10.3390/plants5010003

Jasmonates (JAs) are lipid-derived signals in plant stress responses and development. A crucial step in JA biosynthesis is catalyzed by allene oxide cyclase (AOC). Four genes encoding functional AOCs (AOC1, AOC2, AOC3 and AOC4) have been characterized for Arabidopsis thaliana in terms of organ- and tissue-specific expression, mutant phenotypes, promoter activities and initial in vivo protein interaction studies suggesting functional redundancy and diversification, including first hints at enzyme activity control by protein-protein interaction. Here, these analyses were extended by detailed analysis of recombinant proteins produced in Escherichia coli. Treatment of purified AOC2 with SDS at different temperatures, chemical cross-linking experiments and protein structure analysis by molecular modelling approaches were performed. Several salt bridges between monomers and a hydrophobic core within the AOC2 trimer were identified and functionally proven by site-directed mutagenesis. The data obtained showed that AOC2 acts as a trimer. Finally, AOC activity was determined in heteromers formed by pairwise combinations of the four AOC isoforms. The highest activities were found for heteromers containing AOC4 + AOC1 and AOC4 + AOC2, respectively. All data are in line with an enzyme activity control of all four AOCs by heteromerization, thereby supporting a putative fine-tuning in JA formation by various regulatory principles.
Publikation

Floková, K.; Feussner, K.; Herrfurth, C.; Miersch, O.; Mik, V.; Tarkowská, D.; Strnad, M.; Feussner, I.; Wasternack, C.; Novák, O.; A previously undescribed jasmonate compound in flowering Arabidopsis thaliana – The identification of cis-(+)-OPDA-Ile Phytochemistry 122, 230-237, (2016) DOI: 10.1016/j.phytochem.2015.11.012

Jasmonates (JAs) are plant hormones that integrate external stress stimuli with physiological responses. (+)-7-iso-JA-L-Ile is the natural JA ligand of COI1, a component of a known JA receptor. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-(+)-OPDA) has been reported to act independently of COI1 as an essential signal in several stress-induced and developmental processes. Wound-induced increases in the endogenous levels of JA/JA-Ile are accompanied by two to tenfold increases in the concentration of OPDA, but its means of perception and metabolism are unknown. To screen for putative OPDA metabolites, vegetative tissues of flowering Arabidopsis thaliana were extracted with 25% aqueous methanol (v/v), purified by single-step reversed-phase polymer-based solid-phase extraction, and analyzed by high throughput mass spectrometry. This enabled the detection and quantitation of a low abundant OPDA analog of the biologically active (+)-7-iso-JA-L-Ile in plant tissue samples. Levels of the newly identified compound and the related phytohormones JA, JA-Ile and cis-(+)-OPDA were monitored in wounded leaves of flowering Arabidopsis lines (Col-0 and Ws) and compared to the levels observed in Arabidopsis mutants deficient in the biosynthesis of JA (dde2-2, opr3) and JA-Ile (jar1). The observed cis-(+)-OPDA-Ile levels varied widely, raising questions concerning its role in Arabidopsis stress responses.
Publikation

Drost, H.-G.; Bellstädt, J.; Ó'Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H. W. M.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M.; Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development Mol. Biol. Evol. 33, 1158-1163, (2016) DOI: 10.1093/molbev/msw039

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
Publikation

Arnold, M. D.; Gruber, C.; Floková, K.; Miersch, O.; Strnad, M.; Novák, O.; Wasternack, C.; Hause, B.; The Recently Identified Isoleucine Conjugate of cis-12-Oxo-Phytodienoic Acid Is Partially Active in cis-12-Oxo-Phytodienoic Acid-Specific Gene Expression of Arabidopsis thaliana PLOS ONE 11, e0162829, (2016) DOI: 10.1371/journal.pone.0162829

Oxylipins of the jasmonate family are active as signals in plant responses to biotic and abiotic stresses as well as in development. Jasmonic acid (JA), its precursor cis-12-oxo-phytodienoic acid (OPDA) and the isoleucine conjugate of JA (JA-Ile) are the most prominent members. OPDA and JA-Ile have individual signalling properties in several processes and differ in their pattern of gene expression. JA-Ile, but not OPDA, is perceived by the SCFCOI1-JAZ co-receptor complex. There are, however, numerous processes and genes specifically induced by OPDA. The recently identified OPDA-Ile suggests that OPDA specific responses might be mediated upon formation of OPDA-Ile. Here, we tested OPDA-Ile-induced gene expression in wild type and JA-deficient, JA-insensitive and JA-Ile-deficient mutant background. Tests on putative conversion of OPDA-Ile during treatments revealed only negligible conversion. Expression of two OPDA-inducible genes, GRX480 and ZAT10, by OPDA-Ile could be detected in a JA-independent manner in Arabidopsis seedlings but less in flowering plants. The data suggest a bioactivity in planta of OPDA-Ile.
Publikation

Miersch, O.; Neumerkel, J.; Dippe, M.; Stenzel, I.; Wasternack, C.; Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling New Phytol. 177, 114-127, (2008) DOI: 10.1111/j.1469-8137.2007.02252.x

In potato 12‐hydroxyjasmonic acid (12‐OH‐JA) is a tuber‐inducing compound. Here, it is demonstrated that 12‐OH‐JA, as well as its sulfated and glucosylated derivatives, are constituents of various organs of many plant species. All accumulate differentially and usually to much higher concentrations than jasmonic acid (JA).In wounded tomato leaves, 12‐OH‐JA and its sulfated, as well as glucosylated, derivative accumulate after JA, and their diminished accumulation in wounded leaves of the JA‐deficient mutants spr2 and acx1 and also a JA‐deficient 35S::AOCantisense line suggest their JA‐dependent formation.To elucidate how signaling properties of JA/JAME (jasmonic acid methyl ester) are affected by hydroxylation and sulfation, germination and root growth were recorded in the presence of the different jasmonates, indicating that 12‐OH‐JA and 12‐hydroxyjasmonic acid sulfate (12‐HSO4‐JA) were not bioactive. Expression analyses for 29 genes showed that expression of wound‐inducible genes such as those coding for PROTEINASE INHIBITOR2, POLYPHENOL OXIDASE, THREONINE DEAMINASE or ARGINASE was induced by JAME and less induced or even down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA. Almost all genes coding for enzymes in JA biosynthesis were up‐regulated by JAME but down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA.The data suggest that wound‐induced metabolic conversion of JA/JAME into 12‐OH‐JA alters expression pattern of genes including a switch off in JA signaling for a subset of genes.
Publikation

Floß, D. S.; Hause, B.; Lange, P. R.; Küster, H.; Strack, D.; Walter, M. H.; Knock-down of the MEP pathway isogene 1-deoxy-d-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes Plant J. 56, 86-100, (2008) DOI: 10.1111/j.1365-313X.2008.03575.x

The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1‐deoxy‐d‐ xylulose 5‐phosphate synthase (DXS1 and DXS2). In Medicago truncatula , MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM‐induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non‐AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2‐1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4 , an AM‐specific plant phosphate transporter gene, and in a multitude of other AM‐induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2‐dependent MEP pathway‐based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Publikation

Fellenberg, C.; Milkowski, C.; Hause, B.; Lange, P.-R.; Böttcher, C.; Schmidt, J.; Vogt, T.; Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana Plant J. 56, 132-145, (2008) DOI: 10.1111/j.1365-313X.2008.03576.x

Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N  ′,N  ′′‐ bis‐(5‐hydroxyferuloyl)‐N  ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
Publikation

Stenzel, I.; Hause, B.; Proels, R.; Miersch, O.; Oka, M.; Roitsch, T.; Wasternack, C.; The AOC promoter of tomato is regulated by developmental and environmental stimuli Phytochemistry 69, 1859-1869, (2008) DOI: 10.1016/j.phytochem.2008.03.007

The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the β-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli.
IPB Mainnav Search