zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 4 von 4.

Publikation

Schilling, S.; Stenzel, I.; von Bohlen, A.; Wermann, M.; Schulz, K.; Demuth, H.-U.; Wasternack, C.; Isolation and characterization of the glutaminyl cyclases from Solanum tuberosum and Arabidopsis thaliana: implications for physiological functions Biol. Chem. 388, 145-153, (2007) DOI: 10.1515/BC.2007.016

Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 105- to 106-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Stenzel, I.; Goetz, S.; Feussner, I.; Miersch, O.; Jasmonate signaling in tomato – The input of tissue-specific occurrence of allene oxide cyclase and JA metabolites (Benning C., Ollrogge, J.). 107-111, (2007)

0
Publikation

Stumpe, M.; Carsjens, J.-G.; Stenzel, I.; Göbel, C.; Lang, I.; Pawlowski, K.; Hause, B.; Feussner, I.; Lipid metabolism in arbuscular mycorrhizal roots of Medicago truncatula Phytochemistry 66, 781-791, (2005) DOI: 10.1016/j.phytochem.2005.01.020

The peroxidation of polyunsaturated fatty acids, common to all eukaryotes, is mostly catalyzed by members of the lipoxygenase enzyme family of non-heme iron containing dioxygenases. Lipoxygenase products can be metabolized further in the oxylipin pathway by several groups of CYP74 enzymes. One prominent oxylipin is jasmonic acid (JA), a product of the 13-allene oxide synthase branch of the pathway and known as signaling substance that plays a role in vegetative and propagative plant development as well as in plant responses to wounding and pathogen attack. In barley roots, JA level increases upon colonization by arbuscular mycorrhizal fungi. Apart from this first result regarding JA, no information is available on the relevance of lipidperoxide metabolism in arbuscular mycorrhizal symbiosis. Thus we analyzed fatty acid and lipidperoxide patterns in roots of Medicago truncatula during mycorrhizal colonization. Levels of fungus-specific fatty acids as well as palmitic acid (16:0) and oleic acid (18:1 n − 9) were increased in mycorrhizal roots. Thus the degree of arbuscular mycorrhizal colonization of roots can be estimated via analysis of fungal specific esterified fatty acids. Otherwise, no significant changes were found in the profiles of esterified and free fatty acids. The 9- and 13-LOX products of linoleic and α-linolenic acid were present in all root samples, but did not show significant differences between mycorrhizal and non-mycorrhizal roots, except JA which showed elevated levels in mycorrhizal roots. In both types of roots levels of 13-LOX products were higher than those of 9-LOX products. In addition, three cDNAs encoding CYP74 enzymes, two 9/13-hydroperoxide lyases and a 13-allene oxide synthase, were isolated and characterized. The transcript accumulation of these three genes, however, was not increased in mycorrhizal roots of M. truncatula.
Publikation

Isayenkov, S.; Mrosk, C.; Stenzel, I.; Strack, D.; Hause, B.; Suppression of Allene Oxide Cyclase in Hairy Roots of Medicago truncatula Reduces Jasmonate Levels and the Degree of Mycorrhization with Glomus intraradices Plant Physiol. 139, 1401-1410, (2005) DOI: 10.1104/pp.105.069054

During the symbiotic interaction between Medicago truncatula and the arbuscular mycorrhizal (AM) fungus Glomus intraradices, an endogenous increase in jasmonic acid (JA) occurs. Two full-length cDNAs coding for the JA-biosynthetic enzyme allene oxide cyclase (AOC) from M. truncatula, designated as MtAOC1 and MtAOC2, were cloned and characterized. The AOC protein was localized in plastids and found to occur constitutively in all vascular tissues of M. truncatula. In leaves and roots, MtAOCs are expressed upon JA application. Enhanced expression was also observed during mycorrhization with G. intraradices. A partial suppression of MtAOC expression was achieved in roots following transformation with Agrobacterium rhizogenes harboring the MtAOC1 cDNA in the antisense direction under control of the cauliflower mosaic virus 35S promoter. In comparison to samples transformed with 35S∷uidA, roots with suppressed MtAOC1 expression exhibited lower JA levels and a remarkable delay in the process of colonization with G. intraradices. Both the mycorrhization rate, quantified by fungal rRNA, and the arbuscule formation, analyzed by the expression level of the AM-specific gene MtPT4, were affected. Staining of fungal material in roots with suppressed MtAOC1 revealed a decreased number of arbuscules, but these did not exhibit an altered structure. Our results indicate a crucial role for JA in the establishment of AM symbiosis.
IPB Mainnav Search