zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 41.

Publikation

Naumann, C.; Müller, J.; Sakhonwasee, S.; Wieghaus, A.; Hause, G.; Heisters, M.; Bürstenbinder, K.; Abel, S.; The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy Plant Physiol. 179, 460-476, (2019) DOI: 10.1104/pp.18.01379

Inorganic phosphate (Pi) is often a limiting plant nutrient. In members of the Brassicaceae family, such as Arabidopsis (Arabidopsis thaliana), Pi deprivation reshapes root system architecture to favor topsoil foraging. It does so by inhibiting primary root extension and stimulating lateral root formation. Root growth inhibition from phosphate (Pi) deficiency is triggered by iron-stimulated, apoplastic reactive oxygen species generation and cell wall modifications, which impair cell-to-cell communication and meristem maintenance. These processes require LOW PHOSPHATE RESPONSE1 (LPR1), a cell wall-targeted ferroxidase, and PHOSPHATE DEFICIENCY RESPONSE2 (PDR2), the single endoplasmic reticulum (ER)-resident P5-type ATPase (AtP5A), which is thought to control LPR1 secretion or activity. Autophagy is a conserved process involving the vacuolar degradation of cellular components. While the function of autophagy is well established under nutrient starvation (C, N, or S), it remains to be explored under Pi deprivation. Because AtP5A/PDR2 likely functions in the ER stress response, we analyzed the effect of Pi limitation on autophagy. Our comparative study of mutants defective in the local Pi deficiency response, ER stress response, and autophagy demonstrated that ER stress-dependent autophagy is rapidly activated as part of the developmental root response to Pi limitation and requires the genetic PDR2-LPR1 module. We conclude that Pi-dependent activation of autophagy in the root apex is a consequence of local Pi sensing and the associated ER stress response, rather than a means for systemic recycling of the macronutrient.
Publikation

Hussain, H.; Ziegler, J.; Hause, G.; Wohlrab, J.; Neubert, R. H.; Quantitative Analysis of Free Amino Acids and Urea Derived from Isolated Corneocytes of Healthy Young, Healthy Aged, and Diseased Skin Skin Pharmacol. Physiol. 32, 94-100, (2019) DOI: 10.1159/000495992

Background/Aims: Free amino acids (FAAs) and urea, present inside the corneocytes, can be important indicators of skin condition. However, due to the lack of a standard extraction protocol for FAAs from corneocytes, conflicting research results have been reported. Therefore, the purpose of this study was (1) to standardize the extraction protocol and (2) to investigate FAA profiles in healthy young and healthy old volunteers, as well as in psoriasis and atopic dermatitis patients. Methods: Skin samples were collected from four groups (healthy young, healthy old, and psoriasis and atopic dermatitis patients) with 5 volunteers per group. Corneocytes were isolated and examined microscopically. FAAs and urea were extracted from the isolated corneocytes, and their amounts were quantified using LC-ESI/MS/MS (after derivatization with Fmoc-Cl) and colorimetric methods, respectively. Results: The micrographs of the corneocytes showed no morphological features attributable to age or disease conditions. The highest and lowest concentrations of total FAAs and urea were observed in the healthy old group and the healthy young group, respectively. Unlike the other FAAs and urea, citrulline was found at a higher level in the healthy young group than in the disease groups. Conclusion: This study suggests that the levels of FAAs and urea in the skin are affected by age and skin conditions (healthy/diseased). However, further studies are needed to show the effects of different skin conditions on the levels of FAAs and urea.
Publikation

Bürstenbinder, K.; Möller, B.; Plötner, R.; Stamm, G.; Hause, G.; Mitra, D.; Abel, S.; The IQD Family of Calmodulin-Binding Proteins Links Calcium Signaling to Microtubules, Membrane Subdomains, and the Nucleus Plant Physiol. 173, 1692-1708, (2017) DOI: 10.1104/pp.16.01743

Calcium (Ca2+) signaling and dynamic reorganization of the cytoskeleton are essential processes for the coordination and control of plant cell shape and cell growth. Calmodulin (CaM) and closely related calmodulin-like (CML) polypeptides are principal sensors of Ca2+ signals. CaM/CMLs decode and relay information encrypted by the second messenger via differential interactions with a wide spectrum of targets to modulate their diverse biochemical activities. The plant-specific IQ67 DOMAIN (IQD) family emerged as possibly the largest class of CaM-interacting proteins with undefined molecular functions and biological roles. Here, we show that the 33 members of the IQD family in Arabidopsis (Arabidopsis thaliana) differentially localize, using green fluorescent protein (GFP)-tagged proteins, to multiple and distinct subcellular sites, including microtubule (MT) arrays, plasma membrane subdomains, and nuclear compartments. Intriguingly, the various IQD-specific localization patterns coincide with the subcellular patterns of IQD-dependent recruitment of CaM, suggesting that the diverse IQD members sequester Ca2+-CaM signaling modules to specific subcellular sites for precise regulation of Ca2+-dependent processes. Because MT localization is a hallmark of most IQD family members, we quantitatively analyzed GFP-labeled MT arrays in Nicotiana benthamiana cells transiently expressing GFP-IQD fusions and observed IQD-specific MT patterns, which point to a role of IQDs in MT organization and dynamics. Indeed, stable overexpression of select IQD proteins in Arabidopsis altered cellular MT orientation, cell shape, and organ morphology. Because IQDs share biochemical properties with scaffold proteins, we propose that IQD families provide an assortment of platform proteins for integrating CaM-dependent Ca2+ signaling at multiple cellular sites to regulate cell function, shape, and growth.
Preprints

Drost, H.-G.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I.; Capturing Evolutionary Signatures in Transcriptomes with myTAI bioRxiv (2016) DOI: 10.1101/051565

Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.
Publikation

Drost, H.-G.; Bellstädt, J.; Ó'Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H. W. M.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M.; Post-embryonic Hourglass Patterns Mark Ontogenetic Transitions in Plant Development Mol. Biol. Evol. 33, 1158-1163, (2016) DOI: 10.1093/molbev/msw039

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found postembryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
Preprints

Drost, H.-G.; Bellstädt, J.; Ó’Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M.; Post-embryonic hourglass patterns mark ontogenetic transitions in plant development bioRxiv (2015) DOI: 10.1101/035527

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found post-embryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
Publikation

Hamdi, I.; Elleuch, A.; Bessaies, N.; Grubb, C. D.; Fakhfakh, H.; First report of Citrus viroid V in North Africa J. Gen. Plant Pathol. 81, 87-91, (2015) DOI: 10.1007/s10327-014-0556-9

We tested citrus samples from Tunisia using reverse transcription-polymerase chain reaction (RT-PCR), and for the first time, Citrus viroid V (CVd-V) was reported in North Africa. Fourteen of 38 tested citrus trees were infected by CVd-V including the majority of varieties grown in Tunisia. Some RT-PCR results were also supported by biological indexing. After sequencing the RT-PCR products, three new CVd-V variants were identified, showing 80–91 % nucleotide sequence identity with those reported previously. Based on phylogenetic analysis using all CVd-V sequences in GenBank, two main CVd-V groups were identified. Furthermore, construction of a genetic network of the detected haplotypes using the same sequences shows a clear geographical structuring of Tunisian CVd-V variants.
Publikation

Drost, H.-G.; Gabel, A.; Grosse, I.; Quint, M.; Evidence for Active Maintenance of Phylotranscriptomic Hourglass Patterns in Animal and Plant Embryogenesis Mol. Biol. Evol. 32, 1221-1231, (2015) DOI: 10.1093/molbev/msv012

The developmental hourglass model has been used to describe the morphological transitions of related species throughout embryogenesis. Recently, quantifiable approaches combining transcriptomic and evolutionary information provided novel evidence for the presence of a phylotranscriptomic hourglass pattern across kingdoms. As its biological function is unknown it remains speculative whether this pattern is functional or merely represents a nonfunctional evolutionary relic. The latter would seriously hamper future experimental approaches designed to test hypotheses regarding its function. Here, we address this question by generating transcriptome divergence index (TDI) profiles across embryogenesis of Danio rerio, Drosophila melanogaster, and Arabidopsis thaliana. To enable meaningful evaluation of the resulting patterns, we develop a statistical test that specifically assesses potential hourglass patterns. Based on this objective measure we find that two of these profiles follow a statistically significant hourglass pattern with the most conserved transcriptomes in the phylotypic periods. As the TDI considers only recent evolutionary signals, this indicates that the phylotranscriptomic hourglass pattern is not a rudiment but possibly actively maintained, implicating the existence of some linked biological function associated with embryogenesis in extant species.
Publikation

Rekik, I.; Drira, N.; Grubb, C. D.; Elleuch, A.; Molecular characterization and evolution studies of a SERK like gene transcriptionally induced during somatic embryogenesis in Phoenix Dactylifera L v Deglet Nour Genetika 47, 323-337, (2015) DOI: 10.2298/GENSR1501323R

A somatic embryogenesis receptor kinase like (SERKL) cDNA, designated PhSERKL, was isolated from date palm (Phoenix Dactylifera L) using RACE PCR. PhSERKL protein shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, a transmembrane domain, and kinase domains. Phylogenetic analyses using PHYLIP and Notung 2.7 programs suggest that the SERK proteins of some plant species resulted from relatively ancient duplication events. We predict an ancestor protein of monocots and dicots SERK using FASTML program. Somatic embryogenic cultures of date palm were established following transfer of callus cultures to medium containing 2, 4-dichlorophenoxyacetic acid. The role of PhSERKL gene during establishment of somatic embryogenesis in culture was investigated using quantitative real-time PCR. PhSERKL gene was highly expressed during embryogenic competence acquisition and globular embryo formation in culture. Overall, levels of expression of PhSERKL gene were lower in nonembryogenic tissues and organs than in embryogenic callus.
Publikation

Rekik, I.; Chaâbene, Z.; Grubb, C. D.; Drira, N.; Cheour, F.; Elleuch, A.; In silico characterization and Molecular modeling of double-strand break repair protein MRE11 from Phoenix dactylifera v deglet nour Theor. Biol. Med. Model. 12, 23, (2015) DOI: 10.1186/s12976-015-0013-2

BackgroundDNA double-strand breaks (DSBs) are highly cytotoxic and mutagenic. MRE11 plays an essential role in repairing DNA by cleaving broken ends through its 3′ to 5′ exonuclease and single-stranded DNA endonuclease activities.MethodsThe present study aimed to in silico characterization and molecular modeling of MRE11 from Phoenix dactylifera L cv deglet nour (DnMRE11) by various bioinformatic approaches. To identify DnMRE11 cDNA, assembled contigs from our cDNA libraries were analysed using the Blast2GO2.8 program.ResultsThe DnMRE11 protein length was 726 amino acids. The results of HUMMER show that DnMRE11 is formed by three domains: the N-terminal core domain containing the nuclease and capping domains, the C-terminal half containing the DNA binding and coiled coil region. The structure of DnMRE11 is predicted using the Swiss-Model server, which contains the nuclease and capping domains. The obtained model was verified with the structure validation programs such as ProSA and QMEAN servers for reliability. Ligand binding studies using COACH indicated the interaction of DnMRE11 protein with two Mn2+ ions and dAMP. The ConSurf server predicted that residues of the active site and Nbs binding site have high conservation scores between plant species.ConclusionsA model structure of DnMRE11 was constructed and validated with various bioinformatics programs which suggested the predicted model to be satisfactory. Further validation studies were conducted by COACH analysis for active site ligand prediction, and revealed the presence of six ligands binding sites and two ligands (2 Mn2+ and dAMP).
IPB Mainnav Search