zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: sort ascending Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Publikation

Feussner, I.; Hause, B.; Nellen, A.; Wasternack, C.; Kindl, H. Lipid-body lipoxygenase is expressed in cotyledons during germination prior to other lipoxygenase forms Planta 198, 288-293, (1996) DOI: 10.1007/BF00206255

Lipid bodies are degraded during germination. Whereas some proteins, e.g. oleosins, are synthesized during the formation of lipid bodies of maturating seeds, a new set of proteins, including a specific form of lipoxygenase (LOX; EC 1.13.11.12), is detectable in lipid bodies during the stage of fat degradation in seed germination. In cotyledons of cucumber (Cucumis sativus L.) seedlings at day 4 of germination, the most conspicuous staining with anti-LOX antibodies was observed in the cytosol. At very early stages of germination, however, the LOX form present in large amounts and synthesized preferentially was the lipid-body LOX. This was demonstrated by immunocytochemical staining of cotyledons from 1-h and 24-h-old seedlings: the immunodecoration of sections of 24-h-old seedlings with anti-LOX antiserum showed label exclusively correlated with lipid bodies of around 3 μm in diameter. In accordance, the profile of LOX protein isolated from lipid bodies during various stages of germination showed a maximum at day 1. By measuring biosynthesis of the protein in vivo we demonstrated that the highest rates of synthesis of lipid-body LOX occurred at day 1 of germination. The early and selective appearance of a LOX form associated with lipid bodies at this stage of development is discussed.
Publikation

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Peña-Cortés, H. Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis Plant Physiol. 112, 853-860, (1996)

0
Publikation

Peña-Cortés, H.; Prat, S.; Atzorn, R.; Wasternack, C.; Willmitzer, L. Pin2 gene expression in potato and tomato detached leaves from ABA-deficient potato and tomato plants upon systemin treatment Planta 198, 447-451, (1996)

0
Publikation

Wasternack, C.; Atzorn, R.; Pena-Cortes, H.; Parthier, B. Alteration of gene expression by jasmonate and ABA in tobacco and tomato J. Plant Physiol. 147, 503-510, (1996)

0
Publikation

Feussner, K.; Guranowski, A.; Kostka, S.; Wasternack, C. Diadenosine 5'5'''-P1,P4-tetraphosphate (Ap4A) hydrolase from tomato (<EM>Lycopersicon esculentum</EM> cv. Lukullus) - Purification, Biochemical properties and behaviour during stress Z. Naturforsch. 51c, 477-486, (1996)

0
Publikation

O'Donnell, P.J.; Calvert, C.; Atzorn, R.; Wasternack, C.; Leyser, H.M.O.; Bowles, D.J. Ethylene as a signal mediating the wound response of tomato plants Science 274, 1914-1917, (1996)

0
Publikation

Wasternack, C.; Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in <span>Annals of Botany</span> Annals of Botany 111, 1021-1058, (2013) DOI: 10.1093/aob/mct067

Background: Jasmonates are important regulators in plant responses to biotic and abiotic stresses as well as indevelopment. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to differentmetabolites including the conjugate with isoleucine. Important new components of jasmonate signalling includingits receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stressresponses and development.Scope: The present review is an update of the review on jasmonates published in this journal in 2007. New dataof the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception andsignalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens,in symbiotic interactions, in flower development, in root growth and in light perception.Conclusions: The last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN(JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of thejasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature ofnetworks of jasmonate signalling in stress responses and development including hormone cross-talk can beaddressed.
Publikation

Acosta, I. F.; Gasperini, D.; Chételat, A.; Stolz, S.; Santuari, L.; Farmer, E. E. Role of NINJA in root jasmonate signaling Proc Natl Acad Sci USA 110, 15473-15478, (2013) DOI: 10.1073/pnas.1307910110

Wound responses in plants have to be coordinated between organs so that locally reduced growth in a wounded tissue is balanced by appropriate growth elsewhere in the body. We used a JASMONATE ZIM DOMAIN 10 (JAZ10) reporter to screen for mutants affected in the organ-specific activation of jasmonate (JA) signaling in Arabidopsis thaliana seedlings. Wounding one cotyledon activated the reporter in both aerial and root tissues, and this was either disrupted or restricted to certain organs in mutant alleles of core components of the JA pathway including COI1, OPR3, and JAR1. In contrast, three other mutants showed constitutive activation of the reporter in the roots and hypocotyls of unwounded seedlings. All three lines harbored mutations in Novel Interactor of JAZ (NINJA), which encodes part of a repressor complex that negatively regulates JA signaling. These ninja mutants displayed shorter roots mimicking JA-mediated growth inhibition, and this was due to reduced cell elongation. Remarkably, this phenotype and the constitutive JAZ10 expression were still observed in backgrounds lacking the ability to synthesize JA or the key transcriptional activator MYC2. Therefore, JA-like responses can be recapitulated in specific tissues without changing a plant’s ability to make or perceive JA, and MYC2 either has no role or is not the only derepressed transcription factor in ninja mutants. Our results show that the role of NINJA in the root is to repress JA signaling and allow normal cell elongation. Furthermore, the regulation of the JA pathway differs between roots and aerial tissues at all levels, from JA biosynthesis to transcriptional activation.
IPB Mainnav Search