zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 19.

Publikation

Wasternack, C.; Hause, B.; Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany Ann. Bot. 111, 1021-1058, (2013) DOI: 10.1093/aob/mct067

BackgroundJasmonates are important regulators in plant responses to biotic and abiotic stresses as well as in development. Synthesized from lipid-constituents, the initially formed jasmonic acid is converted to different metabolites including the conjugate with isoleucine. Important new components of jasmonate signalling including its receptor were identified, providing deeper insight into the role of jasmonate signalling pathways in stress responses and development.ScopeThe present review is an update of the review on jasmonates published in this journal in 2007. New data of the last five years are described with emphasis on metabolites of jasmonates, on jasmonate perception and signalling, on cross-talk to other plant hormones and on jasmonate signalling in response to herbivores and pathogens, in symbiotic interactions, in flower development, in root growth and in light perception.ConclusionsThe last few years have seen breakthroughs in the identification of JASMONATE ZIM DOMAIN (JAZ) proteins and their interactors such as transcription factors and co-repressors, and the crystallization of the jasmonate receptor as well as of the enzyme conjugating jasmonate to amino acids. Now, the complex nature of networks of jasmonate signalling in stress responses and development including hormone cross-talk can be addressed.
Publikation

Wasternack, C.; Forner, S.; Strnad, M.; Hause, B.; Jasmonates in flower and seed development Biochimie 95, 79-85, (2013) DOI: 10.1016/j.biochi.2012.06.005

Jasmonates are ubiquitously occurring lipid-derived signaling compounds active in plant development and plant responses to biotic and abiotic stresses. Upon environmental stimuli jasmonates are formed and accumulate transiently. During flower and seed development, jasmonic acid (JA) and a remarkable number of different metabolites accumulate organ- and tissue specifically. The accumulation is accompanied with expression of jasmonate-inducible genes. Among these genes there are defense genes and developmentally regulated genes. The profile of jasmonate compounds in flowers and seeds covers active signaling molecules such as JA, its precursor 12-oxophytodienoic acid (OPDA) and amino acid conjugates such as JA-Ile, but also inactive signaling molecules occur such as 12-hydroxy-JA and its sulfated derivative. These latter compounds can occur at several orders of magnitude higher level than JA. Metabolic conversion of JA and JA-Ile to hydroxylated compounds seems to inactivate JA signaling, but also specific functions of jasmonates in flower and seed development were detected. In tomato OPDA is involved in embryo development. Occurrence of jasmonates, expression of JA-inducible genes and JA-dependent processes in flower and seed development will be discussed.
Publikation

Huang, H.; Quint, M.; Gray, W. M.; The eta7/csn3-3 Auxin Response Mutant of Arabidopsis Defines a Novel Function for the CSN3 Subunit of the COP9 Signalosome PLOS ONE 8, e66578, (2013) DOI: 10.1371/journal.pone.0066578

The COP9 signalosome (CSN) is an eight subunit protein complex conserved in all higher eukaryotes. In Arabidopsis thaliana, the CSN regulates auxin response by removing the ubiquitin-like protein NEDD8/RUB1 from the CUL1 subunit of the SCFTIR1/AFB ubiquitin-ligase (deneddylation). Previously described null mutations in any CSN subunit result in the pleiotropic cop/det/fus phenotype and cause seedling lethality, hampering the study of CSN functions in plant development. In a genetic screen to identify enhancers of the auxin response defects conferred by the tir1-1 mutation, we identified a viable csn mutant of subunit 3 (CSN3), designated eta7/csn3-3. In addition to enhancing tir1-1 mutant phenotypes, the csn3-3 mutation alone confers several phenotypes indicative of impaired auxin signaling including auxin resistant root growth and diminished auxin responsive gene expression. Unexpectedly however, csn3-3 plants are not defective in either the CSN-mediated deneddylation of CUL1 or in SCFTIR1-mediated degradation of Aux/IAA proteins. These findings suggest that csn3-3 is an atypical csn mutant that defines a novel CSN or CSN3-specific function. Consistent with this possibility, we observe dramatic differences in double mutant interactions between csn3-3 and other auxin signaling mutants compared to another weak csn mutant, csn1-10. Lastly, unlike other csn mutants, assembly of the CSN holocomplex is unaffected in csn3-3 plants. However, we detected a small CSN3-containing protein complex that is altered in csn3-3 plants. We hypothesize that in addition to its role in the CSN as a cullin deneddylase, CSN3 functions in a distinct protein complex that is required for proper auxin signaling.
Bücher und Buchkapitel

Wasternack, C.; Hause, B.; Benno Parthier und die Jasmonatforschung in Halle (Hacker, J., ed.). Nova Acta Leopoldina Supplementum Nr. 28, 29-38, (2013)

0
Publikation

Hause, B.; Stenzel, I.; Miersch, O.; Maucher, H.; Kramell, R.; Ziegler, J.; Wasternack, C.; Tissue-specific oxylipin signature of tomato flowers: allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles Plant J. 24, 113-126, (2000) DOI: 10.1046/j.1365-313x.2000.00861.x

A crucial step in the biosynthesis of jasmonic acid (JA) is the formation of its correct stereoisomeric precursor, cis (+)12‐oxophytodienoic acid (OPDA). This step is catalysed by allene oxide cyclase (AOC), which has been recently cloned from tomato . In stems, young leaves and young flowers, AOC mRNA accumulates to a low level , contrasting with a high accumulation in flower buds, flower stalks and roots. The high levels of AOC mRNA and AOC protein in distinct flower organs correlate with high AOC activity, and with elevated levels of JA, OPDA and JA isoleucine conjugate. These compounds accumulate in flowers to levels of about 20 nmol g−1 fresh weight, which is two orders of magnitude higher than in leaves. In pistils, the level of OPDA is much higher than that of JA, whereas in flower stalks, the level of JA exceeds that of OPDA. In other flower tissues, the ratios among JA, OPDA and JA isoleucine conjugate differ remarkably, suggesting a tissue‐specific oxylipin signature. Immunocytochemical analysis revealed the specific occurrence of the AOC protein in ovules, the transmission tissue of the style and in vascular bundles of receptacles, flower stalks, stems, petioles and roots. Based on the tissue‐specific AOC expression and formation of JA, OPDA and JA amino acid conjugates, a possible role for these compounds in flower development is discussed in terms of their effect on sink–source relationships and plant defence reactions. Furthermore, the AOC expression in vascular bundles might play a role in the systemin‐mediated wound response of tomato.
Publikation

Ziegler, J.; Stenzel, I.; Hause, B.; Maucher, H.; Hamberg, M.; Grimm, R.; Ganal, M.; Wasternack, C.; Molecular Cloning of Allene Oxide Cyclase J. Biol. Chem. 275, 19132-19138, (2000) DOI: 10.1074/jbc.M002133200

Allene oxide cyclase (EC 5.3.99.6) catalyzes the stereospecific cyclization of an unstable allene oxide to (9S,13S)-12-oxo-(10,15Z)-phytodienoic acid, the ultimate precursor of jasmonic acid. This dimeric enzyme has previously been purified, and two almost identical N-terminal peptides were found, suggesting allene oxide cyclase to be a homodimeric protein. Furthermore, the native protein was N-terminally processed. Using degenerate primers, a polymerase chain reaction fragment could be generated from tomato, which was further used to isolate a full-length cDNA clone of 1 kilobase pair coding for a protein of 245 amino acids with a molecular mass of 26 kDa. Whereas expression of the whole coding region failed to detect allene oxide cyclase activity, a 5′-truncated protein showed high activity, suggesting that additional amino acids impair the enzymatic function. Steric analysis of the 12-oxophytodienoic acid formed by the recombinant enzyme revealed exclusive (>99%) formation of the 9S,13Senantiomer. Exclusive formation of this enantiomer was also found in wounded tomato leaves. Southern analysis and genetic mapping revealed the existence of a single gene for allene oxide cyclase located on chromosome 2 of tomato. Inspection of the N terminus revealed the presence of a chloroplastic transit peptide, and the location of allene oxide cyclase protein in that compartment could be shown by immunohistochemical methods. Concomitant with the jasmonate levels, the accumulation of allene oxide cyclase mRNA was transiently induced after wounding of tomato leaves.
Publikation

Weichert, H.; Kolbe, A.; Wasternack, C.; Feussner, I.; Formation of 4-hydroxy-2-alkenals in barley leaves Biochem. Soc. Trans. 28, 850-851, (2000) DOI: 10.1042/bst0280850

In barley leaves 13-lipoxygenases are induced by jasmonates. This leads to induction of lipid peroxidation. Here we show by in vitro studies that these processes may further lead to autoxidative formation of (2E)-4-hydroxy-2-hexenal from (3Z)-hexenal.
Publikation

Wasternack, C.; Hause, B.; Stressabwehr und Entwicklung: Jasmonate — chemische Signale in Pflanzen Biologie in unserer Zeit 30, 312-320, (2000) DOI: 10.1002/1521-415X(200011)30:6<312::AID-BIUZ312>3.0.CO;2-8

Chemische Signale wurden bereits im 19.Jahrhundert als Regulatoren von Wachstum und Entwicklung der Pflanzen postuliert.In den letzten 70 Jahren wurde die Wirkungsweise der klassischen Pflanzenhormone wie der Auxine, Gibberelline, Cytokinine, Ethylen und Abscisinsäure aufgeklärt. Doch erst im letzten Jahrzehnt entdeckte man die Bedeutung der Brassinosteroide, der Peptidhormone und der Jasmonate.
Publikation

Miersch, O.; Wasternack, C.; Octadecanoid and Jasmonate Signaling in Tomato (Lycopersicon esculentum Mill.) Leaves: Endogenous Jasmonates Do Not Induce Jasmonate Biosynthesis Biol. Chem. 381, 715-722, (2000) DOI: 10.1515/BC.2000.092

Jasmonates and their precursors, the octadecanoids, are signals in stress-induced alteration of gene expression. Several mRNAs coding for enzymes of jasmonic acid (JA) biosynthesis are up-regulated upon JA treatment or endogenous increase of the JA level. Here we investigated the positive feedback of endogenous JA on JA formation, as well as its β-oxidation steps. JA-responsive gene expression was recorded in terms of proteinase inhibitor2 (pin2) mRNA accumulation. JA formed upon treatment of tomato (Lycopersicon esculentum cv. Moneymaker) leaves with JA derivatives carrying different lengths of the carboxylic acid side chain was quantified by gas chromatography-mass spectrometry (GC-MS). The data revealed that β-oxidation of the side chain occurs up to a butyric acid moiety. The amount of JA formed from side-chain modified JA derivatives correlated with pin2-mRNA accumulation. JA derivatives with a carboxylic side chain of 3, 5 or 7 carbon atoms were unable to form JA and to express on pin2, whereas evennumbered derivatives were active.After treatment of tomato leaves with (10-2H)-(–)-12-oxophytoenoic acid, (4-2H)-(–)-JA and its methyl ester were formed and could be quantified separately from the endogenously nonlabeled JA pool by GC-MS analysis via isotopic discrimination. The level of 8 nmol per g fresh weight JA and its methyl ester originated exclusively from labeled 12-oxophytoenic acid. This and further data indicate that endogenous synthesis of the JA precursor 12-oxophytodienoic acid, as well as of JA and its methyl ester, are not induced in tomato leaves, suggesting that positive feedback in JA biosynthesis does not function in vivo.
Publikation

Maucher, H.; Hause, B.; Feussner, I.; Ziegler, J.; Wasternack, C.; Allene oxide synthases of barley (Hordeum vulgare cv. Salome): tissue specific regulation in seedling development Plant J. 21, 199-213, (2000) DOI: 10.1046/j.1365-313x.2000.00669.x

Allene oxide synthase (AOS) is the first enzyme in the lipoxygenase (LOX) pathway which leads to formation of jasmonic acid (JA). Two full‐length cDNAs of AOS designated as AOS1 and AOS2, respectively, were isolated from barley (H. vulgare cv. Salome) leaves, which represent the first AOS clones from a monocotyledonous species. For AOS1, the open reading frame encompasses 1461 bp encoding a polypeptide of 487 amino acids with calculated molecular mass of 53.4 kDa and an isoelectric point of 9.3, whereas the corresponding data of AOS2 are 1443 bp, 480 amino acids, 52.7 kDa and 7.9. Southern blot analysis revealed at least two genes. Despite the lack of a putative chloroplast signal peptide in both sequences, the protein co‐purified with chloroplasts and was localized within chloroplasts by immunocytochemical analysis. The barley AOSs, expressed in bacteria as active enzymes, catalyze the dehydration of LOX‐derived 9‐ as well as 13‐hydroperoxides of polyenoic fatty acids to the unstable allene oxides. In leaves, AOS mRNA accumulated upon treatment with jasmonates, octadecanoids and metabolizable carbohydrates, but not upon floating on abscisic acid, NaCl, Na‐salicylate or infection with powdery mildew. In developing seedlings, AOS mRNA strongly accumulated in the scutellar nodule, but less in the leaf base. Both tissues exhibited elevated JA levels. In situ hybridizations revealed the preferential occurrence of AOS mRNA in parenchymatic cells surrounding the vascular bundles of the scutellar nodule and in the young convoluted leaves as well as within the first internode. The properties of both barley AOSs, their up‐regulation of their mRNAs and their tissue specific expression suggest a role during seedling development and jasmonate biosynthesis.
IPB Mainnav Search