zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 18.

Publikation

Stenzel, I.; Hause, B.; Proels, R.; Miersch, O.; Oka, M.; Roitsch, T.; Wasternack, C.; The AOC promoter of tomato is regulated by developmental and environmental stimuli Phytochemistry 69, 1859-1869, (2008) DOI: 10.1016/j.phytochem.2008.03.007

The allene oxide cyclase (AOC) catalyzes the formation of cis-(+)-12-oxophytodienoic acid, an intermediate in jasmonate biosynthesis and is encoded by a single copy gene in tomato. The full length AOC promoter isolated by genome walk contains 3600 bp. Transgenic tomato lines carrying a 1000 bp promoter fragment and the full length promoter, respectively, in front of the β-glucuronidase (GUS)-encoding uidA gene and several tobacco lines carrying the full length tomato AOC promoter before GUS were used to record organ- and tissue-specific promoter activities during development and in response to various stimuli. High promoter activities corresponding to immunocytochemically detected occurrence of the AOC protein were found in seeds and young seedlings and were confined to the root tip, hypocotyl and cotyledons of 3-d-old seedlings. In 10-d-old seedlings promoter activity appeared preferentially in the elongation zone. Fully developed tomato leaves were free of AOC promoter activity, but showed high activity upon wounding locally and systemically or upon treatment with JA, systemin or glucose. Tomato flowers showed high AOC promoter activities in ovules, sepals, anthers and pollen. Most of the promoter activity patterns found in tomato with the 1000 bp promoter fragment were also detected with the full length tomato AOC promoter in tobacco during development or in response to various stimuli. The data support a spatial and temporal regulation of JA biosynthesis during development and in response to environmental stimuli.
Publikation

Schilling, S.; Wasternack, C.; Demuth, H.-U.; Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution Biol. Chem. 389, (2008) DOI: 10.1515/BC.2008.111

Several mammalian peptide hormones and proteins from plant and animal origin contain an N-terminal pyroglutamic acid (pGlu) residue. Frequently, the moiety is important in exerting biological function in either mediating interaction with receptors or stabilizing against N-terminal degradation. Glutaminyl cyclases (QCs) were isolated from different plants and animals catalyzing pGlu formation. The recent resolution of the 3D structures of Carica papaya and human QCs clearly supports different evolutionary origins of the proteins, which is also reflected by different enzymatic mechanisms. The broad substrate specificity is revealed by the heterogeneity of physiological substrates of plant and animal QCs, including cytokines, matrix proteins and pathogenesis-related proteins. Moreover, recent evidence also suggests human QC as a catalyst of pGlu formation at the N-terminus of amyloid peptides, which contribute to Alzheimer's disease. Obviously, owing to its biophysical properties, the function of pGlu in plant and animal proteins is very similar in terms of stabilizing or mediating protein and peptide structure. It is possible that the requirement for catalysis of pGlu formation under physiological conditions may have triggered separate evolution of QCs in plants and animals.
Publikation

Miersch, O.; Neumerkel, J.; Dippe, M.; Stenzel, I.; Wasternack, C.; Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling New Phytol. 177, 114-127, (2008) DOI: 10.1111/j.1469-8137.2007.02252.x

In potato 12‐hydroxyjasmonic acid (12‐OH‐JA) is a tuber‐inducing compound. Here, it is demonstrated that 12‐OH‐JA, as well as its sulfated and glucosylated derivatives, are constituents of various organs of many plant species. All accumulate differentially and usually to much higher concentrations than jasmonic acid (JA).In wounded tomato leaves, 12‐OH‐JA and its sulfated, as well as glucosylated, derivative accumulate after JA, and their diminished accumulation in wounded leaves of the JA‐deficient mutants spr2 and acx1 and also a JA‐deficient 35S::AOCantisense line suggest their JA‐dependent formation.To elucidate how signaling properties of JA/JAME (jasmonic acid methyl ester) are affected by hydroxylation and sulfation, germination and root growth were recorded in the presence of the different jasmonates, indicating that 12‐OH‐JA and 12‐hydroxyjasmonic acid sulfate (12‐HSO4‐JA) were not bioactive. Expression analyses for 29 genes showed that expression of wound‐inducible genes such as those coding for PROTEINASE INHIBITOR2, POLYPHENOL OXIDASE, THREONINE DEAMINASE or ARGINASE was induced by JAME and less induced or even down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA. Almost all genes coding for enzymes in JA biosynthesis were up‐regulated by JAME but down‐regulated by 12‐OH‐JA and 12‐HSO4‐JA.The data suggest that wound‐induced metabolic conversion of JA/JAME into 12‐OH‐JA alters expression pattern of genes including a switch off in JA signaling for a subset of genes.
Publikation

Kienow, L.; Schneider, K.; Bartsch, M.; Stuible, H.-P.; Weng, H.; Miersch, O.; Wasternack, C.; Kombrink, E.; Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana J. Exp. Bot. 59, 403-419, (2008) DOI: 10.1093/jxb/erm325

Arabidopsis thaliana contains a large number of genes encoding carboxylic acid-activating enzymes, including long-chain fatty acyl-CoA synthetase (LACS), 4-coumarate:CoA ligases (4CL), and proteins closely related to 4CLs with unknown activities. The function of these 4CL-like proteins was systematically explored by applying an extensive substrate screen, and it was uncovered that activation of fatty acids is the common feature of all active members of this protein family, thereby defining a new group of fatty acyl-CoA synthetase, which is distinct from the known LACS family. Significantly, four family members also displayed activity towards different biosynthetic precursors of jasmonic acid (JA), including 12-oxo-phytodienoic acid (OPDA), dinor-OPDA, 3-oxo-2(2′-[Z]-pentenyl)cyclopentane-1-octanoic acid (OPC-8), and OPC-6. Detailed analysis of in vitro properties uncovered significant differences in substrate specificity for individual enzymes, but only one protein (At1g20510) showed OPC-8:CoA ligase activity. Its in vivo function was analysed by transcript and jasmonate profiling of Arabidopsis insertion mutants for the gene. OPC-8:CoA ligase expression was activated in response to wounding or infection in the wild type but was undetectable in the mutants, which also exhibited OPC-8 accumulation and reduced levels of JA. In addition, the developmental, tissue- and cell-type specific expression pattern of the gene, and regulatory properties of its promoter were monitored by analysing promoter::GUS reporter lines. Collectively, the results demonstrate that OPC-8:CoA ligase catalyses an essential step in JA biosynthesis by initiating the β-oxidative chain shortening of the carboxylic acid side chain of its precursors, and, in accordance with this function, the protein is localized in peroxisomes.
Publikation

Brüx, A.; Liu, T.-Y.; Krebs, M.; Stierhof, Y.-D.; Lohmann, J. U.; Miersch, O.; Wasternack, C.; Schumacher, K.; Reduced V-ATPase Activity in the trans-Golgi Network Causes Oxylipin-Dependent Hypocotyl Growth Inhibition in Arabidopsis Plant Cell 20, 1088-1100, (2008) DOI: 10.1105/tpc.108.058362

Regulated cell expansion allows plants to adapt their morphogenesis to prevailing environmental conditions. Cell expansion is driven by turgor pressure created by osmotic water uptake and is restricted by the extensibility of the cell wall, which in turn is regulated by the synthesis, incorporation, and cross-linking of new cell wall components. The vacuolar H+-ATPase (V-ATPase) could provide a way to coordinately regulate turgor pressure and cell wall synthesis, as it energizes the secondary active transport of solutes across the tonoplast and also has an important function in the trans-Golgi network (TGN), which affects synthesis and trafficking of cell wall components. We have previously shown that det3, a mutant with reduced V-ATPase activity, has a severe defect in cell expansion. However, it was not clear if this is caused by a defect in turgor pressure or in cell wall synthesis. Here, we show that inhibition of the tonoplast-localized V-ATPase subunit isoform VHA-a3 does not impair cell expansion. By contrast, inhibition of the TGN-localized isoform VHA-a1 is sufficient to restrict cell expansion. Furthermore, we provide evidence that the reduced hypocotyl cell expansion in det3 is conditional and due to active, hormone-mediated growth inhibition caused by a cell wall defect.
Publikation

Wasternack, C.; Feussner, I.; Multifunctional Enzymes in Oxylipin Metabolism ChemBioChem 9, 2373-2375, (2008) DOI: 10.1002/cbic.200800582

For the first time a member of the CYP74 enzyme subfamily (9‐AOS) from tomato has been shown by chemical and analytical approaches to catalyze multiple reactions. These multifunctional properties of 9‐AOS from the oxylipin‐forming lipoxygenase (LOX) pathway raise several new questions on lipid‐derived signaling.
Publikation

Weichert, H.; Kohlmann, M.; Wasternack, C.; Feussner, I.; Metabolic profiling of oxylipins upon sorbitol treatment in barley leaves Biochem. Soc. Trans. 28, 861-862, (2001) DOI: 10.1042/bst0280861

In barley leaves 13-lipoxygenases (LOXs) are induced by salicylate and jasmonate. Here, we analyse by metabolic profiling the accumulation of oxylipins upon sorbitol treatment. Although 13-LOX-derived products are formed and specifically directed into the reductase branch of the LOX pathway, accumulation is much later than in the cases of salicylate and jasmonate treatment. In addition, under these conditions only the accumulation of jasmonates as additional products of the LOX pathway has been found.
Publikation

BERGER, S.; Weichert, H.; Porzel, A.; Wasternack, C.; Kühn, H.; Feussner, I.; Enzymatic and non-enzymatic lipid peroxidation in leaf development BBA-Mol. Cell Biol. Lipids 1533, 266-276, (2001) DOI: 10.1016/S1388-1981(01)00161-5

Enzymatic and non-enzymatic lipid peroxidation has been implicated in programmed cell death, which is a major process of leaf senescence. To test this hypothesis we developed a high-performance liquid chromatography (HPLC) method for a simultaneous analysis of the major hydro(pero)xy polyenoic fatty acids. Quantities of lipid peroxidation products in leaves of different stages of development including natural senescence indicated a strong increase in the level of oxygenated polyenoic fatty acids (PUFAs) during the late stages of leaf senescence. Comprehensive structural elucidation of the oxygenation products by means of HPLC, gas chromatography/mass spectrometry and 1H nuclear magnetic resonance suggested a non-enzymatic origin. However, in some cases a small share of specifically oxidized PUFAs was identified suggesting involvement of lipid peroxidizing enzymes. To inspect the possible role of enzymatic lipid peroxidation in leaf senescence, we analyzed the abundance of lipoxygenases (LOXs) in rosette leaves of Arabidopsis. LOXs and their product (9Z,11E,13S,15Z)-13-hydroperoxy-9,11,15-octadecatrienoic acid were exclusively detected in young green leaves. In contrast, in senescing leaves the specific LOX products were overlaid by large amounts of stereo-random lipid peroxidation products originating from non-enzymatic oxidation. These data indicate a limited contribution of LOXs to total lipid peroxidation, and a dominant role of non-enzymatic lipid peroxidation in late stages of leaf development.
Publikation

Hilpert, B.; Bohlmann, H.; Den Camp, R. o.; Przybyla, D.; Miersch, O.; Buchala, A.; Apel, K.; Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions Plant J. 26, 435-446, (2001) DOI: 10.1046/j.1365-313X.2001.2641036.x

Thionins are a group of antimicrobial polypeptides that form part of the plant's defense mechanism against pathogens. The Thi 2.1 thionin gene of Arabidopsis thaliana has been shown to be inducible by jasmonic acid (JA), an oxylipin‐like hormone derived from oxygenated linolenic acid and synthesized via the octadecanoid pathway. The JA‐dependent regulation of the Thi 2.1 gene has been exploited for setting up a genetic screen for the isolation of signal transduction mutants that constitutively express the Thi 2.1 gene. Ten cet‐mutants have been isolated which showed a c onstitutive e xpression of the t hionin gene. Allelism tests revealed that they represent at least five different loci. Some mutants are dominant, others recessive, but all cet mutations behaved as monogenic traits when backcrossed with Thi 2.1‐GUS plants. Some of the mutants overproduce JA and its bioactive precursor 12‐oxophytodienoic acid (OPDA) up to 40‐fold while others have the same low levels as the control wildtype plants. Two of the mutants showed a strong induction of both the salicylic acid (SA)‐ and the JA‐dependent signaling pathways, while the majority seems to be affected only in the octadecanoid pathway. The Thi 2.1 thionin gene and the Pdf 1.2 defensin gene are activated independently, though both are regulated by JA. The cet‐mutants, except for one, also show a spontaneous leaf cell necrosis, a reaction often associated with the systemic acquired resistance (SAR) pathway.
Publikation

Feussner, I.; Kühn, H.; Wasternack, C.; Lipoxygenase-dependent degradation of storage lipids Trends Plant Sci. 6, 268-273, (2001) DOI: 10.1016/S1360-1385(01)01950-1

Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo β-oxidation.
IPB Mainnav Search