zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 27.

Publikation

Wasternack, C.; Hause, B.; The missing link in jasmonic acid biosynthesis Nat. Plants 5, 776-777, (2019) DOI: 10.1038/s41477-019-0492-y

Jasmonic acid biosynthesis starts in chloroplasts and is finalized in peroxisomes. The required export of a crucial intermediate out of the chloroplast is now shown to be mediated by a protein from the outer envelope called JASSY.
Publikation

Wasternack, C.; Termination in Jasmonate Signaling by MYC2 and MTBs Trends Plant Sci. 24, 667-669, (2019) DOI: 10.1016/j.tplants.2019.06.001

Jasmonic acid (JA) signaling can be switched off by metabolism of JA. The master regulator MYC2, interacting with MED25, has been shown to be deactivated by the bHLH transcription factors MTB1, MTB2, and MTB3. An autoregulatory negative feedback loop has been proposed for this termination in JA signaling.
Publikation

Wasternack, C.; New Light on Local and Systemic Wound Signaling Trends Plant Sci. 24, 102-105, (2019) DOI: 10.1016/j.tplants.2018.11.009

Electric signaling and Ca2+ waves were discussed to occur in systemic wound responses. Two new overlapping scenarios were identified: (i) membrane depolarization in two special cell types followed by an increase in systemic cytoplasmic Ca2+ concentration ([Ca2+]cyt), and (ii) glutamate sensed by GLUTAMATE RECEPTOR LIKE proteins and followed by Ca2+-based defense in distal leaves.
Publikation

Wasternack, C.; Strnad, M.; Jasmonates are signals in the biosynthesis of secondary metabolites — Pathways, transcription factors and applied aspects — A brief review New Biotechnol. 48, 1-11, (2019) DOI: 10.1016/j.nbt.2017.09.007

Jasmonates (JAs) are signals in plant stress responses and development. One of the first observed and prominent responses to JAs is the induction of biosynthesis of different groups of secondary compounds. Among them are nicotine, isoquinolines, glucosinolates, anthocyanins, benzophenanthridine alkaloids, artemisinin, and terpenoid indole alkaloids (TIAs), such as vinblastine. This brief review describes modes of action of JAs in the biosynthesis of anthocyanins, nicotine, TIAs, glucosinolates and artemisinin. After introducing JA biosynthesis, the central role of the SCFCOI1-JAZ co-receptor complex in JA perception and MYB-type and MYC-type transcription factors is described. Brief comments are provided on primary metabolites as precursors of secondary compounds. Pathways for the biosynthesis of anthocyanin, nicotine, TIAs, glucosinolates and artemisinin are described with an emphasis on JA-dependent transcription factors, which activate or repress the expression of essential genes encoding enzymes in the biosynthesis of these secondary compounds. Applied aspects are discussed using the biotechnological formation of artemisinin as an example of JA-induced biosynthesis of secondary compounds in plant cell factories.
Publikation

Bellstaedt, J.; Trenner, J.; Lippmann, R.; Poeschl, Y.; Zhang, X.; Friml, J.; Quint, M.; Delker, C.; A Mobile Auxin Signal Connects Temperature Sensing in Cotyledons with Growth Responses in Hypocotyls Plant Physiol. 180, 757-766, (2019) DOI: 10.1104/pp.18.01377

Plants have a remarkable capacity to adjust their growth and development to elevated ambient temperatures. Increased elongation growth of roots, hypocotyls, and petioles in warm temperatures are hallmarks of seedling thermomorphogenesis. In the last decade, significant progress has been made to identify the molecular signaling components regulating these growth responses. Increased ambient temperature utilizes diverse components of the light sensing and signal transduction network to trigger growth adjustments. However, it remains unknown whether temperature sensing and responses are universal processes that occur uniformly in all plant organs. Alternatively, temperature sensing may be confined to specific tissues or organs, which would require a systemic signal that mediates responses in distal parts of the plant. Here, we show that Arabidopsis (Arabidopsis thaliana) seedlings show organ-specific transcriptome responses to elevated temperatures and that thermomorphogenesis involves both autonomous and organ-interdependent temperature sensing and signaling. Seedling roots can sense and respond to temperature in a shoot-independent manner, whereas shoot temperature responses require both local and systemic processes. The induction of cell elongation in hypocotyls requires temperature sensing in cotyledons, followed by the generation of a mobile auxin signal. Subsequently, auxin travels to the hypocotyl, where it triggers local brassinosteroid-induced cell elongation in seedling stems, which depends upon a distinct, permissive temperature sensor in the hypocotyl.
Publikation

Ratajczak, R.; Feussner, I.; Hause, B.; Böhm, A.; Parthier, B.; Wasternack, C.; Alteration of V-type H+-ATPase during methyljasmonate-induced senescence in barley (Hordeum vulgare L. cv. Salome) J. Plant Physiol. 152, 199-206, (1998) DOI: 10.1016/S0176-1617(98)80133-8

In barley leaves, the application of (−)-jasmonic acid or its methyl ester (JAME) induces a senescencelike phenotype. This is accompanied by the synthesis of abundant proteins, so-called jasmonate-induced proteins (JlPs). Here, we show that modifications of vacuolar H+-ATPase (V-ATPase) subunits are jasmo-nate inducible. Using immunofluorescence analysis, we demonstrate that V-ATPase of barley leaves is exclusively located at the tonoplast also upon JAME treatment. Total ATP-hydrolysis activity of microsomal fractions increased by a factor of 10 during 72 h of JAME-treatment, while Bafilomycin Ai-sensitive ATP-hydrolysis activity, which is usually referred to V-ATPase activity, increased by a factor of about 2 in tono-plast-enriched membrane fractions. Moreover, due to JAME treatment there was a pronounced increase in ATP-hydrolysis activity at pH 6.2. This activity was not affected by inhibitors of P-, F-, or V-ATPases. However, biochemical analysis of partially purified V-ATPase suggests, that this activity might be due at least in part to the V-ATPase. JAME-treatment seems to change biochemical properties of the V-ATPase, i.e. a shift of the pH optimum of activity to a more acidic pH and a decrease in Bafilomycin A1 sensitivity. This is accompanied by the appearance of several additional forms of V-ATPase subunits which might represent either different isoforms or post-translationally modified proteins. We suggest that these changes in properties of the V-ATPase, which is involved in house-keeping and stress responses, may be due to JAME-induced senescence to overcome concomitant changes of the vacuolar membrane.
Publikation

Feussner, I.; Wasternack, C.; Lipoxygenase catalyzed oxygenation of lipids Fett/Lipid 100, 146-152, (1998) DOI: 10.1002/(SICI)1521-4133(19985)100:4/5<146::AID-LIPI146>3.0.CO;2-D

Lipoxygenases (LOXs) and other LOX pathway enzymes are potentially able to form a large set of compounds being of commercial interest. Among them are conjugated dienic acids, jasmonates, and volatile aldehydes. Additionally, fatty acid hydroperoxides, formed by LOX, can serve as precursors for further transformation by either enzymes of the so‐called LOX pathway or by chemical reactions. In the case of linoleic acid more than one hundred products generated from its LOX‐derived fatty acid hydroperoxides have been described. Many of these products exhibit biological activity, suggesting a significant biological function of LOXs. This will be described for two different 13‐LOXs. (I) In various oilseeds we found that specific 13‐LOXs are localized at the lipid body membrane. They are capable of oxygenating esterified polyenoic fatty acids, such as triacylglycerols and phospho‐lipids. In addition, they form with arachidonic acid as substrate preferentially either 8‐ or 11‐hydroperoxy eicosatetraenoic acid, which is a very unusual positional specificity for plant LOXs. (II) From barley leaves we isolated another linoleate 13‐LOX form, which is localized within chloroplasts and is induced by jasmonic acid methyl ester. It is suggested, that this LOX form is capable of oxygenating linolenic acid residues of galactolipids. Examples will be presented for barley leaves of oxygenated derivatives of linolenic acid and compounds resulting from the hydroperoxide lyase‐branch of the LOX pathway.
Publikation

Churin, J.; Hause, B.; Feussner, I.; Maucher, H. P.; Feussner, K.; Börner, T.; Wasternack, C.; Cloning and expression of a new cDNA from monocotyledonous plants coding for a diadenosine 5′,5′′′-P1,P4-tetraphosphate hydrolase from barley (Hordeum vulgare) FEBS Lett. 431, 481-485, (1998) DOI: 10.1016/S0014-5793(98)00819-9

From a cDNA library generated from mRNA of white leaf tissues of the ribosome‐deficient mutant ‘albostrians' of barley (Hordeum vulgare cv. Haisa) a cDNA was isolated carrying 54.2% identity to a recently published cDNA which codes for the diadenosine‐5′,5′′′‐P1,P4‐tetraphosphate (Ap4A) hydrolase of Lupinus angustifolius (Maksel et al. (1998) Biochem. J. 329, 313–319), and 69% identity to four partial peptide sequences of Ap4A hydrolase of tomato. Overexpression in Escherichia coli revealed a protein of about 19 kDa, which exhibited Ap4A hydrolase activity and cross‐reactivity with an antibody raised against a purified tomato Ap4A hydrolase (Feussner et al. (1996) Z. Naturforsch. 51c, 477–486). Expression studies showed an mRNA accumulation in all organs of a barley seedling. Possible functions of Ap4A hydrolase in plants will be discussed.
Publikation

Bohlmann, H.; Vignutelli, A.; Hilpert, B.; Miersch, O.; Wasternack, C.; Apel, K.; Wounding and chemicals induce expression of the Arabidopsis thaliana gene Thi2.1, encoding a fungal defense thionin, via the octadecanoid pathway FEBS Lett. 437, 281-286, (1998) DOI: 10.1016/S0014-5793(98)01251-4

In seedlings of Arabidopsis thaliana the thionin gene Thi2.1 is inducible by methyl jasmonate, wounding, silver nitrate, coronatine, and sorbitol. We have used a biochemical and genetic approach to test the signal transduction of these different inducers. Both exogenously applied jasmonates and jasmonates produced endogenously upon stress induction, lead to GUS expression in a Thi2.1 promoter-uidA transgenic line. No GUS expression was observed in a coi1 mutant background which lacks jasmonate perception whereas methyl jasmonate and coronatine but not the other inducers were able to overcome the block in jasmonic acid production in a fad3-2 fad7-2 fad8 mutant background. Our results show conclusively that all these inducers regulate Thi2-1 gene expression via the octadecanoid pathway.
IPB Mainnav Search