zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 26.

Bücher und Buchkapitel

Wasternack, C.; Hause, B. Jasmonates and octadecanoids: Signals in plant stress responses and development (Moldave, K.). 72, 165-221, (2002) DOI: 10.1016/S0079-6603(02)72070-9

0
Bücher und Buchkapitel

Scheel, D.; Wasternack, C. Signal transduction in plants: Cross-talk with the environment (Scheel, D., Wasternack, C.). University Press, Oxford, UK 1-5, (2002)

0
Publikation

Hause, B.; Maier, W.; Miersch, O.; Kramell, R.; Strack, D. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots Plant Physiol. 130, 1213-1220, (2002) DOI: 10.1104/pp.006007

Colonization of barley (Hordeum vulgare cv Salome) roots by an arbuscular mycorrhizal fungus, Glomus intraradices Schenck & Smith, leads to elevated levels of endogenous jasmonic acid (JA) and its amino acid conjugate JA-isoleucine, whereas the level of the JA precursor, oxophytodienoic acid, remains constant. The rise in jasmonates is accompanied by the expression of genes coding for an enzyme of JA biosynthesis (allene oxide synthase) and of a jasmonate-induced protein (JIP23). In situ hybridization and immunocytochemical analysis revealed that expression of these genes occurred cell specifically within arbuscule-containing root cortex cells. The concomitant gene expression indicates that jasmonates are generated and act within arbuscule-containing cells. By use of a near-synchronous mycorrhization, analysis of temporal expression patterns showed the occurrence of transcript accumulation 4 to 6 d after the appearance of the first arbuscules. This suggests that the endogenous rise in jasmonates might be related to the fully established symbiosis rather than to the recognition of interacting partners or to the onset of interaction. Because the plant supplies the fungus with carbohydrates, a model is proposed in which the induction of JA biosynthesis in colonized roots is linked to the stronger sink function of mycorrhizal roots compared with nonmycorrhizal roots.
Publikation

Schilling, S.; Hoffmann, T.; Rosche, F.; Manhart, S.; Wasternack, C.; Demuth, H.-U. Heterologous expression and characterization of human glutaminyl cyclase: evidence for a disulfide bond with importance for catalytic activity Biochemistry 41, 10849-10857, (2002)

0
Publikation

Weichert, H.; Kolbe, A.; Kraus, A.; Wasternack, C.; Feussner, I. Metabolic profiling of oxylipins in germinating cucumber seedlings - lipoxygenase-dependent degradation of triacylglycerols and biosynthesis of volatile aldehydes Planta 215, 612-619, (2002)

0
Publikation

Feussner, I.; Wasternack, C. The lipoxygenase pathway Annu. Rev. Plant Biol. 53, 275-297, (2002)

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Publikation

Ellis, C.; Karafyllidis, I.; Wasternack, C.; Turner, J.G. The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses The Plant Cell 14, 1557-1566, (2002)

0
Publikation

Schilling, S.; Hoffmann, T.; Wermann, M.; Heiser, U.; Wasternack, C.; Demuth, H.-U. Continuous spectrometric assays for glutaminyl cyclase activity Analytical Biochemistry 303, 49-56, (2002)

0
Publikation

Nibbe, M.; Hilpert, B.; Wasternack, C.; Miersch, O.; Apel, K. Cell death and salicylate- and jasmonate-dependent stress responses in Arabidopsis are controlled by single cet genes Planta 216, 120-128, (2002)

0
Publikation

Binarová, P.; Hause, B.; Dolezel, J.; Dráber, P. Association of g-tubulin with kinetochore/centromeric region of plant chromosomes Plant J. 14, 751-757, (1998) DOI: 10.1046/j.1365-313x.1998.00166.x

Monoclonal antibodies raised against a phylogenetically conserved peptide from the C-terminal domain of g-tubulin molecule were used for immunofluorescence detection of g-tubulin in acentriolar mitotic spindles of plant cells. The antibodies stained kinetochore fibres along their whole length, including the close vicinity of kinetochores. After microtubule disassembly by the anti-microtubular drugs aminoprophos-methyl (APM), oryzalin, and colchicine, g -tubulin was found on remnants of kinetochore fibres attached to chromosomes. In cells recovering from the amiprophosmethyl treatment, g-tubulin was localized with the re-growing kinetochore microtubule fibres nucleated or captured by kinetochore/centromeric regions. On isolated chromosomes, g-tubulin co-localized with g-tubulin in the kinetochore/centromeric region. The presented data suggest that in acentriolar higher plant cells g -tubulin might be directly or indirectly involved in modulation and/or stabilization of kinetochore-microtubule interactions.
IPB Mainnav Search