zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikation

Wasternack, C.; Song, S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transciption J Exp Bot 68, 1303-1321, (2017) DOI: 10.1093/jxb/erw443

The lipid-derived phytohormone jasmonate (JA) regulates plant growth, development, secondary metabolism, defense against insect attack and pathogen infection, and tolerance to abiotic stresses such as wounding, UV light, salt, and drought. JA was first identified in 1962, and since the 1980s many studies have analyzed the physiological functions, biosynthesis, distribution, metabolism, perception, signaling, and crosstalk of JA, greatly expanding our knowledge of the hormone’s action. In response to fluctuating environmental cues and transient endogenous signals, the occurrence of multilayered organization of biosynthesis and inactivation of JA, and activation and repression of the COI1–JAZ-based perception and signaling contributes to the fine-tuning of JA responses. This review describes the JA biosynthetic enzymes in terms of gene families, enzymatic activity, location and regulation, substrate specificity and products, the metabolic pathways in converting JA to activate or inactivate compounds, JA signaling in perception, and the co-existence of signaling activators and repressors
Publikation

Wasternack, C.; Strnad, M. Jasmonate signaling in plant stress responses and development – active and inactive compounds New Biotechnology 33 B, 604-613, (2016) DOI: 10.1016/j.nbt.2015.11.001

Jasmonates (JAs) are lipid-derived signals mediating plant responses to biotic and abiotic stresses and in plant development. Following the elucidation of each step in their biosynthesis and the important components of perception and signaling, several activators, repressors and co-repressors have been identified which contribute to fine-tuning the regulation of JA-induced gene expression. Many of the metabolic reactions in which JA participates, such as conjugation with amino acids, glucosylation, hydroxylation, carboxylation, sulfation and methylation, lead to numerous compounds with different biological activities. These metabolites may be highly active, partially active in specific processes or inactive. Hydroxylation, carboxylation and sulfation inactivate JA signaling. The precursor of JA biosynthesis, 12-oxo-phytodienoic acid (OPDA), has been identified as a JA-independent signaling compound. An increasing number of OPDA-specific processes is being identified. To conclude, the numerous JA compounds and their different modes of action allow plants to respond specifically and flexibly to alterations in the environment.
Publikation

Stenzel, I.; Otto, M.; Delker, C.; Kirmse, N.; Schmidt, D.; Miersch, O.; Hause, B.; Wasternack, C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization J Exp Bot 63, 6125-6138, (2012) DOI: 10.1093/jxb/ers261

Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs.
Bücher und Buchkapitel

Feussner, I.; Balkenhohl, T.; Porzel, A.; Kühn, H.; Wasternack, C. Structural elucidation of oxygenated triacylglycerols in cucumber and sunflower cotyledons (Schreier, P., Herderich, M., Humpf, H.-U., Schwab, W.). P. Vieweg, Wiesbaden 57-58, (1998)

0
Bücher und Buchkapitel

Kohlmann, M.; Kuntzsch, A.; Wasternack, C.; Feussner, I. Effect of jasmonic acid methyl ester on enzymes of the lipoxygenase pathway in barley leaves (Schreier, P., Herderich, M., Humpf, H.-U., Schwab, W.). P. Vieweg, Wiesbaden 339-340, (1998)

0
Publikation

Wasternack, C.; Parthier, B. Jasmonate-signalled gene expression Trends in Plant Sci. 2, 302-307, (1997)

0
IPB Mainnav Search