zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Wasternack, C.; Feussner, I.; The Oxylipin Pathways: Biochemistry and Function Annu. Rev. Plant Biol. 69, 363-386, (2018) DOI: 10.1146/annurev-arplant-042817-040440

Plant oxylipins form a constantly growing group of signaling molecules that comprise oxygenated fatty acids and metabolites derived therefrom. In the last decade, the understanding of biosynthesis, metabolism, and action of oxylipins, especially jasmonates, has dramatically improved. Additional mechanistic insights into the action of enzymes and insights into signaling pathways have been deepened for jasmonates. For other oxylipins, such as the hydroxy fatty acids, individual signaling properties and cross talk between different oxylipins or even with additional phytohormones have recently been described. This review summarizes recent understanding of the biosynthesis, regulation, and function of oxylipins.
Publikation

Feussner, I.; Wasternack, C.; The lipoxygenase pathway Annu. Rev. Plant Biol. 53, 275-297, (2002) DOI: 10.1146/annurev.arplant.53.100301.135248

Lipid peroxidation is common to all biological systems, both appearing in developmentally and environmentally regulated processes of plants. The hydroperoxy polyunsaturated fatty acids, synthesized by the action of various highly specialized forms of lipoxygenases, are substrates of at least seven different enzyme families. Signaling compounds such as jasmonates, antimicrobial and antifungal compounds such as leaf aldehydes or divinyl ethers, and a plant-specific blend of volatiles including leaf alcohols are among the numerous products. Cloning of many lipoxygenases and other key enzymes within the lipoxygenase pathway, as well as analyses by reverse genetic and metabolic profiling, revealed new reactions and the first hints of enzyme mechanisms, multiple functions, and regulation. These aspects are reviewed with respect to activation of this pathway as an initial step in the interaction of plants with pathogens, insects, or abiotic stress and at distinct stages of development.
Publikation

Ward, J. L.; Gaskin, P.; Beale, M. H.; Sessions, R.; Koda, Y.; Wasternack, C.; Molecular modelling, synthesis and biological activity of methyl 3-methyljasmonate and related derivatives Tetrahedron 53, 8181-8194, (1997) DOI: 10.1016/S0040-4020(97)00485-7

Methyl 3-methyljasmonate was synthesised from methyl jasmonate via methyl 3,7-dehydrojasmonate. Molecular modelling predicted an increase in the proportion of cis-orientated side-chains for equilibrated 3-methyl-substituted jasmonate. The synthetic 3-methyljasmonate was shown by gc-ms analysis to equilibrate to a 2:1 ratio of isomers, which appeared from the NMR spectra to comprise mainly the cis-isomer. Surprisingly, both 3,7-dehydro- and 3-methyl-derivatives were inactive in four well established jasmonate bioassays. Methyl-2-methyljasmonate was synthesised and also found to be inactive. Methyl 4,5-dehydrojasmonate was prepared, via the 5-diazo derivative. Both of these compounds have low activity. Our results are discussed with reference to previous knowledge of jasmonate structure-activity relationships and indicate that there are stringent steric demands in jasmonate-receptor interactions.
IPB Mainnav Search