zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 7 von 7.

Publikation

Wasternack, C. Action of jasmonates in plant stress responses and development — Applied aspects Biotechnol Adv 32 , 31-39, (2014) DOI: 10.1016/j.biotechadv.2013.09.009

Jasmonates (JAs) are lipid-derived compounds acting as key signaling compounds in plant stress responses and development. The JA co-receptor complex and several enzymes of JA biosynthesis have been crystallized, and various JA signal transduction pathways including cross-talk to most of the plant hormones have been intensively studied. Defense to herbivores and necrotrophic pathogens are mediated by JA. Other environmental cues mediated by JA are light, seasonal and circadian rhythms, cold stress, desiccation stress, salt stress and UV stress. During development growth inhibition of roots, shoots and leaves occur by JA, whereas seed germination and flower development are partially affected by its precursor 12-oxo-phytodienoic acid (OPDA). Based on these numerous JA mediated signal transduction pathways active in plant stress responses and development, there is an increasing interest in horticultural and biotechnological applications. Intercropping, the mixed growth of two or more crops, mycorrhization of plants, establishment of induced resistance, priming of plants for enhanced insect resistance as well as pre- and post-harvest application of JA are few examples. Additional sources for horticultural improvement, where JAs might be involved, are defense against nematodes, biocontrol by plant growth promoting rhizobacteria, altered composition of rhizosphere bacterial community, sustained balance between growth and defense, and improved plant immunity in intercropping systems. Finally, biotechnological application for JA-induced production of pharmaceuticals and application of JAs as anti-cancer agents were intensively studied.
Publikation

Ederli, L.; Morettini, R.; Borgogni, A.; Wasternack, C.; Miersch, O.; Reale, L.; Ferranti, F.; Tosit, N.; Pasqualini, S. Interaction between nitric oxide and ethylene in the induction of alternative oxidase in ozone-treated tobacco plants Plant Physiol. 142, 595-608, (2006) DOI: 10.1104/pp.106.085472

0
Publikation

Mur, L.A.J.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C. The outcomes of concentration specific interactions between salicylate and jasmonate signaling include synergy, antagonism and the activation of cell death Plant Physiol. 140, 249-262, (2006) DOI: 10.1104/pp.105.072348

0
Publikation

O'Donnell, P.J.; Schmelz, E.; Block, A.; Miersch, O.; Wasternack, C.; Jones, J.B.; Klee, H.J. Multiple hormones cooperatively control a susceptible tomato pathogen defense response Plant Physiol. 133, 1181-1189, (2003)

0
Publikation

Kramell, R.; Miersch, O.; Atzorn, R.; Parthier, B.; Wasternack, C. Octadecanoid-derived alteration of gene expression and the 'oxylipin signature' in stressed barley leaves - implications for different signalling pathways Plant Physiol. 123, 177-186, (2000)

Stress-induced gene expression in barley (Hordeum vulgare cv. Salome) leaves has been correlated with temporally changing levels of octadecanoids and jasmonates, quantified by means of gas chromatography/mass spectrometry-single ion monitoring. Application of sorbitol-induced stress led to a low and transient rise of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA) and the methyl esters JAME and OPDAME, respectively, followed by a large increase in their levels. JA and JAME peaked between 12 and 16 h, about 4 hours before OPDA and OPDAME. However, OPDA accumulated up to a 2.5-fold higher level than the other compounds. Dihomo-jasmonic acid and 9,13-didehydro-12- oxophytoenoic acid were identified as minor components. Kinetic analyses revealed that a transient threshold of jasmonates or octadecanoids is necessary and sufficient to initiate JA responsive gene expression. Although OPDA and OPDAME applied exogenously were metabolized to JA in considerable amounts, both of them can induce gene expression per se as evidenced by those genes which do not respond to endogenously formed JA. Also, coronatine induces JA-responsive genes independently from endogenous JA. As evidenced by application of deuterated JA, endogenous synthesis of JA is not induced by JA treatment. The data are discussed in terms of distinct signalling pathways.
Publikation

Herde, O.; Peña-Cortés, H.; Wasternack, C.; Willmitzer, L.; Fisahn, J. Electric signaling and PIN2 gene expression on different abiotic stimuli depend on a distinct threshold level of endogenous ABA in several ABA-deficient tomato mutants Plant Physiol. 119, 213-218, (1999)

0
Publikation

Herde, O.; Atzorn, R.; Fisahn, J.; Wasternack, C.; Willmitzer, L.; Peña-Cortés, H. Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis Plant Physiol. 112, 853-860, (1996)

0
IPB Mainnav Search