zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 21.

Publikation

Wasternack, C.; Introductory Remarks on Biosynthesis and Diversity in Actions J. Plant Growth Regul. 23, 167-169, (2004) DOI: 10.1007/s00344-004-0051-1

0
Publikation

Schüler, G.; Mithöfer, A.; Baldwin, I. T.; BERGER, S.; Ebel, J.; Santos, J. G.; Herrmann, G.; Hölscher, D.; Kramell, R.; Kutchan, T. M.; Maucher, H.; Schneider, B.; Stenzel, I.; Wasternack, C.; Boland, W.; Coronalon: a powerful tool in plant stress physiology FEBS Lett. 563, 17-22, (2004) DOI: 10.1016/S0014-5793(04)00239-X

Coronalon, a synthetic 6‐ethyl indanoyl isoleucine conjugate, has been designed as a highly active mimic of octadecanoid phytohormones that are involved in insect and disease resistance. The spectrum of biological activities that is affected by coronalon was investigated in nine different plant systems specifically responding to jasmonates and/or 12‐oxo‐phytodienoic acid. In all bioassays analyzed, coronalon demonstrated a general strong activity at low micromolar concentrations. The results obtained showed the induction of (i) defense‐related secondary metabolite accumulation in both cell cultures and plant tissues, (ii) specific abiotic and biotic stress‐related gene expression, and (iii) root growth retardation. The general activity of coronalon in the induction of plant stress responses together with its simple and efficient synthesis suggests that this compound might serve as a valuable tool in the examination of various aspects in plant stress physiology. Moreover, coronalon might become employed in agriculture to elicit plant resistance against various aggressors.
Publikation

Miersch, O.; Weichert, H.; Stenzel, I.; Hause, B.; Maucher, H.; Feussner, I.; Wasternack, C.; Constitutive overexpression of allene oxide cyclase in tomato (Lycopersicon esculentum cv. Lukullus) elevates levels of some jasmonates and octadecanoids in flower organs but not in leaves Phytochemistry 65, 847-856, (2004) DOI: 10.1016/j.phytochem.2004.01.016

The allene oxide cyclase (AOC), an enzyme in jasmonate biosynthesis, occurs in vascular bundles and ovules of tomato flowers which exhibit a tissue-specific oxylipin signature (Plant J. 24, 113-126, 2000). Constitutive overexpression of the AOC did not led to altered levels of jasmonates in leaves, but these levels increased upon wounding or other stresses suggesting regulation of jasmonate biosynthesis by substrate availability (Plant J. 33, 577-589, 2003). Here, we show dramatic changes in levels of jasmonic acid (JA), of 12-oxo-phytodienoic acid (OPDA), their methyl esters (JAME, OPDAME), and of dinor-OPDA in most flower organs upon constitutive overexpression of AOC. Beside a dominant occurrence of OPDAME and JA in most flower organs, the ratio among the various compounds was altered differentially in the organs of transgenic flowers, e.g. OPDAME increased up to 53-fold in stamen, and JA increased about 51-fold in buds and 7.5-fold in sepals. The increase in jasmonates and octadecanoids was accompanied by decreased levels of free lipid hydro(per)oxy compounds. Except for 16:2, the AOC overexpression led to a significant increase in free but not esterified polyunsaturated fatty acids in all flower organs. The data suggest different regulation of JA biosynthesis in leaves and flowers of tomato.Constitutive overexpression of the AOC increases in all flower organs levels of some jasmonates and octadecanoids, alters the ratios among the compounds, decreases levels of free lipid hydro(per)oxy compounds and increases levels of free but not of esterified polyunsaturated fatty acids.
Publikation

Maucher, H.; Stenzel, I.; Miersch, O.; Stein, N.; Prasad, M.; Zierold, U.; Schweizer, P.; Dorer, C.; Hause, B.; Wasternack, C.; The allene oxide cyclase of barley (Hordeum vulgare L.)—cloning and organ-specific expression Phytochemistry 65, 801-811, (2004) DOI: 10.1016/j.phytochem.2004.01.009

The naturally occurring enantiomer of the various octadecanoids and jasmonates is established in a biosynthetic step catalyzed by the allene oxide cyclase (AOC). The AOC converts an allene oxide formed by an allene oxide synthase (AOS). Here, we show cloning and characterization of cDNAs encoding the AOC and a third AOS, respectively, in addition to the two AOSs previously published (Plant J. 21, 199–213, 2000). The ORF of the AOC-cDNA of 717 bp codes for a protein of 238 amino acid residues carrying a putative chloroplast target sequence. Overexpression without chloroplast target sequence revealed AOC activity. The AOC was found to be a single copy gene which mapped on chromosome 6H. AOC mRNA accumulation appeared in leaf segments upon treatment with various jasmonates, octadecanoids and ABA or during stress such as treatment with sorbitol or glucose solutions. Infection with powdery mildew activated AOC expression in susceptible and resistant lines of barley which correlated with PR1b expression. Among different tissues of barley seedlings, the scutellar node and leaf base accumulated AOC mRNA preferentially which correlated with accumulation of mRNAs for other biosynthetic enzymes (lipoxygenases, AOSs). AOC mRNA accumulation appeared also abundantly in parts of the root containing the tip and correlated with elevated levels of jasmonates. The data suggest a link of AOC expression and JA formation and support role of JA in stress responses and development of barley.Barley plants contain one allene oxide cyclase and three allene oxide synthases which are up-regulated during seedling development accompanied by elevated levels of jasmonate.
Publikation

Köck, M.; Groß, N.; Stenzel, I.; Hause, G.; Phloem-specific expression of the wound-inducible ribonuclease LE from tomato (Lycopersicon esculentum cv. Lukullus) Planta 219, 233-242, (2004) DOI: 10.1007/s00425-004-1227-4

Ribonuclease LE (RNaseLE) from tomato (Lycopersicon esculentum Mill. cv. Lukullus) belongs to the widespread RNase T2 family of ribonucleases. With the exception of S-RNases of the solanaceous self-incompatibility system the functions of other members of the RNase T2 family are only barely understood. Using a 2.6-kbp putative promoter sequence of RNaseLE in front of the uidA reporter gene, expression of β-glucuronidase in developing phloem tissue and, especially, in the meristematic and elongation zones at root tips was detected. The tissue-specific expression accords with the range of cis-acting elements detected in the RNaseLE promoter. RNaseLE mRNA was localized in developing phloem cells but not in mature phloem tissue, suggesting association of RNaseLE expression with phloem development. Histochemical staining of β-glucuronidase activity as well as detailed inspection of RNaseLE at mRNA, protein and enzyme activity levels revealed that the wound-induced expression of RNaseLE was also restricted to vascular tissue. RNaseLE transcript accumulation detected by in situ hybridization occurred preferentially in phloem and cambial cells of stem sections upon wounding. The data provide evidence for a role of RNaseLE in a tissue-specific wound response and in wound healing of tomato.
Publikation

Groß, N.; Wasternack, C.; Köck, M.; Wound-induced RNaseLE expression is jasmonate and systemin independent and occurs only locally in tomato (Lycopersicon esculentum cv. Lukullus) Phytochemistry 65, 1343-1350, (2004) DOI: 10.1016/j.phytochem.2004.04.036

Tomato RNaseLE is induced by phosphate deficiency and wounding and may play a role in macromolecular recycling as well as wound healing. Here, we analyzed the role of jasmonate and systemin in the wound-induced RNaseLE activation. The rapid expression of RNaseLE upon wounding of leaves leading to maximal RNase activity within 10 h, appeared only locally. Jasmonic acid (JA) or its molecular mimic ethyl indanoyl isoleucine conjugate did not induce RNaseLE expression. Correspondingly, RNaseLE was expressed upon wounding of 35S::allene oxide cyclase antisense plants known to be JA deficient. RNaseLE was not expressed upon systemin treatment, but was locally expressed in the spr1 mutant which is affected in systemin perception. In tomato plants carrying a PromLE::uidA construct, GUS activity could be detected upon wounding, but not following treatment with JA or systemin. The data indicate a locally acting wound-inducible systemin- and JA-independent signaling pathway for RNaseLE expression.RNaseLE expression was analyzed by pharmacological studies of different tomato lines and upon wounding of leaves. The gene is only locally activated via a new type of wound-induced signaling pathway in a jasmonate/systemin-independent manner.
Publikation

Bücking, H.; Förster, H.; Stenzel, I.; Miersch, O.; Hause, B.; Applied jasmonates accumulate extracellularly in tomato, but intracellularly in barley FEBS Lett. 562, 45-50, (2004) DOI: 10.1016/S0014-5793(04)00178-4

Jasmonic acid (JA) and its derivatives are well‐characterized signaling molecules in plant defense and development, but the site of their localization within plant tissue is entirely unknown. To address the question whether applied JA accumulates extracellularly or intracellularly, leaves of tomato and barley were fed with 14C‐labeled JA and the label was localized in cryofixed and lyophilized leaf tissues by microautoradiography. In tomato the radioactivity was detectable within the apoplast, but no label was found within the mesophyll cells. By contrast, in barley leaf tissues, radioactivity was detected within the mesophyll cells suggesting a cellular uptake of exogenously applied JA. JA, applied to leaves of both plants as in the labeling experiments, led in all leaf cells to the expression of JA‐inducible genes indicating that the perception is completed by JA signal transduction.
Bücher und Buchkapitel

Wasternack, C.; Jasmonates—Biosynthesis and Role in Stress Responses and Developmental Processes 143-155, (2004) DOI: 10.1016/B978-012520915-1/50012-6

This chapter presents jasmonates and their related compounds and discusses jasmonate-induced alteration of gene expression. Jasmonates exerts two different changes in gene expression— decrease in the expression of nuclear- and chloroplast-encoded genes and increase in the expression of specific genes. Jasmonates are shown to alter sink-source relationships such as JA promotes formation of the N-rich vegetative storage proteins—VSPα and VSPβ—of soybean, including reallocation in pod filling. In addition to such nutrient reallocation to other parts of the plant, jasmonates cause decreases in photosynthesis and chlorophyll content, the most significant manifestations of senescence in leaves. The rise of endogenous jasmonates upon stress or exogenous treatment with jasmonates correlates in time with the expression of various genes. The promotion of senescence by jasmonates is counteracted by cytokinins. The capacity of jasmonates to down regulate photosynthetic genes may also be one determinant in the onset of senescence.
Publikation

O'Donnell, P. J.; Schmelz, E.; Block, A.; Miersch, O.; Wasternack, C.; Jones, J. B.; Klee, H. J.; Multiple Hormones Act Sequentially to Mediate a Susceptible Tomato Pathogen Defense Response Plant Physiol. 133, 1181-1189, (2003) DOI: 10.1104/pp.103.030379

Phytohormones regulate plant responses to a wide range of biotic and abiotic stresses. How a limited number of hormones differentially mediate individual stress responses is not understood. We have used one such response, the compatible interaction of tomato (Lycopersicon esculentum) and Xanthomonas campestris pv vesicatoria (Xcv), to examine the interactions of jasmonic acid (JA), ethylene, and salicylic acid (SA). The role of JA was assessed using an antisense allene oxide cyclase transgenic line and the def1 mutant to suppress Xcv-induced biosynthesis of jasmonates. Xcv growth was limited in these lines as was subsequent disease symptom development. No increase in JA was detected before the onset of terminal necrosis. The lack of a detectable increase in JA may indicate that an oxylipin other than JA regulates basal resistance and symptom proliferation. Alternatively, there may be an increase in sensitivity to JA or related compounds following infection. Hormone measurements showed that the oxylipin signal must precede subsequent increases in ethylene and SA accumulation. Tomato thus actively regulates the Xcv-induced disease response via the sequential action of at least three hormones, promoting expansive cell death of its own tissue. This sequential action of jasmonate, ethylene, and SA in disease symptom development is different from the hormone interactions observed in many other plant-pathogen interactions.
Publikation

Monostori, T.; Schulze, J.; Sharma, V. K.; Maucher, H.; Wasternack, C.; Hause, B.; Novel plasmid vectors for homologous transformation of barley (Hordeum vulgare L.) with JIP23 cDNA in sense and antisense orientation Cereal Res. Commun. 31, 17-24, (2003) DOI: 10.1007/BF03543245

The most abundant jasmonate-induced protein (JIP) in barley leaves is a 23 kDa protein (JIP23). Its function, however, is unknown. In order to analyze its function by homologous transformation, new plasmid vectors have been constructed. They carry the cDNA coding for JIP23 in sense or antisense orientation under the control of the Ubi-1-promoter as well as the pat resistance gene under the control of the 35S promoter. Barley mesophyll protoplasts were transiently transformed with the sense constructs. PAT activity and immunological detection of JIP23 could be achieved in transformed protoplasts but not in untransformed protoplasts indicating that the construct was active. Thus, these new vectors are suitable for stable transformation of barley. Carrying a multiple cloning site (MCS), these vectors can be used now in a wide range of transformation of barley.
IPB Mainnav Search