zur Suche springenzur Navigation springenzum Inhalt springen

Publikationen - Molekulare Signalverarbeitung

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 6 von 6.

Publikationen in Druck

Manoilenko, S.; Dippe, M.; Fuchs, T.; Eisenschmidt-Bönn, D.; Ziegler, J.; Bauer, A.-K.; Wessjohann, L. A.; Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters J. Biotechnol. (2024) DOI: 10.1016/j.jbiotec.2024.04.006

The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6’H1 and AtF6’H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile \"green\" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modelling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Preprints

Mik, V.; Poslíšil, T.; Brunoni, F.; Grúz, J.; Nožková, V.; Wasternack, C.; Miersch, O.; Strnad, M.; Floková, K.; Novák, O.; Široká, J.; Synthetic and analytical routes to the L-amino acid conjugates of cis-OPDA and their identification and quantification in plants ChemRxiv (2023) DOI: 10.26434/chemrxiv-2023-qlzj4

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions, similar to other phytohormones. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic–lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels reached a maximum of pmol/g. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Current synthetic and analytical methodologies support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.
Preprints

Brunoni, F.; Široká, J.; Mik, V.; Pospíšil, T.; Kralová, M.; Ament, A.; Pernisová, M.; Karady, M.; Htitich, M.; Ueda, M.; Floková, K.; Wasternack, C.; Strnad, M.; Novák, O.; Conjugation ofcis-OPDA with amino acids is a conserved pathway affectingcis-OPDA homeostasis upon stress responses (2023) DOI: 10.1101/2023.07.18.549545

Jasmonates (JAs) are a family of oxylipin phytohormones regulating plant development and growth and mediating ‘defense versus growth’ responses. The upstream JA biosynthetic precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA) has been reported to act independently of the COI1-mediated JA signaling in several stress-induced and developmental processes. However, its means of perception and metabolism are only partially understood. Furthermore, cis-OPDA, but not JA, occurs in non-vascular plant species, such as bryophytes, exhibiting specific functions in defense and development. A few years ago, a low abundant isoleucine analog of the biologically active JA-Ile, OPDA-Ile, was detected in wounded leaves of flowering plants, opening up to the possibility that conjugation of cis-OPDA to amino acids might be a relevant mechanism for cis-OPDA regulation. Here, we extended the analysis of amino acid conjugates of cis-OPDA and identified naturally occurring OPDA-Val, OPDA-Phe, OPDA-Ala, OPDA-Glu, and OPDA-Asp in response to biotic and abiotic stress in Arabidopsis. The newly identified OPDA-amino acid conjugates show cis-OPDA-related plant responses in a JAR1-dependent manner. We also discovered that the synthesis and hydrolysis of cis-OPDA amino acid conjugates are regulated by members of the amidosynthetase GH3 and the amidohydrolase ILR1/ILL families. Finally, we found that the cis-OPDA conjugative pathway already functions in non-vascular plants and gymnosperms. Thus, one level of regulation by which plants modulate cis-OPDA homeostasis is the synthesis and hydrolysis of OPDA-amino acid conjugates, which temporarily store cis-OPDA in stress responses.
Preprints

Bassal, M.; Majovsky, P.; Thieme, D.; Herr, T.; Abukhalaf, M.; Ayash, M.; Al Shweiki, M. R.; Proksch, C.; Hmedat, A.; Ziegler, J.; Neumann, S.; Hoehenwarter, W.; Reshaping of the Arabidopsis thaliana proteome landscape and co-regulation of proteins in development and immunity bioRxiv (2020) DOI: 10.1101/2020.03.09.978627

Proteome remodeling is a fundamental adaptive response and proteins in complex and functionally related proteins are often co-expressed. Using a deep sampling strategy we define Arabidopsis thaliana tissue core proteomes at around 10,000 proteins per tissue and absolutely quantify (copy numbers per cell) nearly 16,000 proteins throughout the plant lifecycle. A proteome wide survey of global post translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue and age specific roles of entire signaling modules regulating transcription in photosynthesis, seed development and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of Cysteine-rich Receptor-like Kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were co-expressed tissue and age specifically indicating functional promiscuity in the assembly of these little described protein complexes in Arabidopsis. Treatment of seedlings with flg22 for 16 hours allowed us to characterize proteome architecture in basal immunity in detail. The results were complemented with parallel reaction monitoring (PRM) targeted proteomics, phytohormone, amino acid and transcript measurements. We obtained strong evidence of suppression of jasmonate (JA) and JA-Ile levels by deconjugation and hydroxylation via IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2) under the control of JASMONATE INSENSITIVE 1 (MYC2). This previously unknown regulatory switch is another part of the puzzle of the as yet understudied role of JA in pattern triggered immunity. The extensive coverage of the Arabidopsis proteome in various biological scenarios presents a rich resource to plant biologists that we make available to the community.
Preprints

Drost, H.-G.; Gabel, A.; Domazet-Lošo, T.; Quint, M.; Grosse, I.; Capturing Evolutionary Signatures in Transcriptomes with myTAI bioRxiv (2016) DOI: 10.1101/051565

Combining transcriptome data of biological processes or response to stimuli with evolutionary information such as the phylogenetic conservation of genes or their sequence divergence rates enables the investigation of evolutionary constraints on these processes or responses. Such phylotranscriptomic analyses recently unraveled that mid-developmental transcriptomes of fly, fish, and cress were dominated by evolutionarily conserved genes and genes under negative selection and thus recapitulated the developmental hourglass on the transcriptomic level. Here, we present a protocol for performing phylotranscriptomic analyses on any biological process of interest. When applying this protocol, users are capable of detecting different evolutionary constraints acting on different stages of the biological process of interest in any species. For each step of the protocol, modular and easy-to-use open-source software tools are provided, which enable a broad range of scientists to apply phylotranscriptomic analyses to a wide spectrum of biological questions.
Preprints

Drost, H.-G.; Bellstädt, J.; Ó’Maoiléidigh, D. S.; Silva, A. T.; Gabel, A.; Weinholdt, C.; Ryan, P. T.; Dekkers, B. J. W.; Bentsink, L.; Hilhorst, H.; Ligterink, W.; Wellmer, F.; Grosse, I.; Quint, M.; Post-embryonic hourglass patterns mark ontogenetic transitions in plant development bioRxiv (2015) DOI: 10.1101/035527

The historic developmental hourglass concept depicts the convergence of animal embryos to a common form during the phylotypic period. Recently, it has been shown that a transcriptomic hourglass is associated with this morphological pattern, consistent with the idea of underlying selective constraints due to intense molecular interactions during body plan establishment. Although plants do not exhibit a morphological hourglass during embryogenesis, a transcriptomic hourglass has nevertheless been identified in the model plant Arabidopsis thaliana. Here, we investigated whether plant hourglass patterns are also found post-embryonically. We found that the two main phase changes during the life cycle of Arabidopsis, from embryonic to vegetative and from vegetative to reproductive development, are associated with transcriptomic hourglass patterns. In contrast, flower development, a process dominated by organ formation, is not. This suggests that plant hourglass patterns are decoupled from organogenesis and body plan establishment. Instead, they may reflect general transitions through organizational checkpoints.
IPB Mainnav Search